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Abstract The diurnal cycle of precipitation (DCP) is a fundamental component of the precipitation cycles
across various temporal scales. However, the absence of a comprehensive and intuitive clustering description of
the DCP, including precipitation amount, frequency, intensity, and seasonality on the global scale, has impeded
understanding of climate impacts on society. This study investigates the diurnal cycle and its seasonal
differences in global precipitation using hierarchical clustering and high‐resolution satellite precipitation data.
Results indicate that regions with coastal and topographic complexity exhibit intricate clustering patterns
globally. Significant inter‐cluster differences suggest that the precipitation amount and frequency have stronger
diurnal cycles than that of the precipitation intensity. Seasonal cluster transitions indicate that the global DCP
exhibits significant seasonal differences. This study provides multiple sets of information‐rich and user‐friendly
maps of the DCP, enhancing research on sub‐daily precipitation mechanisms and their climatic impacts.

Plain Language Summary The diurnal precipitation cycle significantly impacts human society and
ecosystems, with spatial variations across the globe. Some regions experience concentrated precipitation at
specific times of the day, while others display a more even distribution. However, there is a need for a clearer
understanding of these spatial variations. This study employs a hierarchical approach to categorize the global
diurnal precipitation cycle using high‐resolution satellite data. Our findings highlight that the diurnal cycle of
precipitation amount and frequency is most pronounced in summer. These maps provide richer details than
conventional methods and are easier to interpret when comparing seasons. Similar to established climate
classifications, these global diurnal precipitation cycle maps offer valuable insights for advancing research into
the diurnal cycle of precipitation.

1. Introduction
As a fundamental mode of atmospheric variability, the diurnal cycle of precipitation (DCP) is prevalent
worldwide (Janowiak et al., 2005). The DCP varies spatially as it is influenced by the local, regional and large‐
scale dynamic and thermal processes (Yu et al., 2014). Various mechanisms influence the DCP, such as the
underlying complex topography, land‐sea breeze and anthropogenic influences (Cook & Vizy, 2024; Doan
et al., 2021; Qiu et al., 2023; Wang et al., 2023; Wu et al., 2018; Yin et al., 2011). As the most fundamental
component of multi‐temporal scale precipitation cycles, the DCP profoundly impacts both nature and society. For
example, the DCP can affect local evapotranspiration and gross primary productivity, thereby impacting local
agriculture economic development (Kincer, 1916; Yang et al., 2023). Therefore, an accurate understanding of the
global DCP would support diagnosing the impact of climate on society.

Previous research has revealed significant spatial disparities in the regional DCP. Land precipitation tends to peak
in the afternoon, particularly in coastal regions such as the southeast coast of China, the Indochinese Peninsula,
and maritime continents (Jiang et al., 2017; Lu et al., 2021; Takahashi et al., 2010). In regions characterized by
complex terrain like basins and mountain ranges, the DCP exhibits diverse characteristics, as seen in the sur-
rounding areas of the Amazon Basin, Qinghai‐Tibet Plateau and Sichuan Basin (Giles et al., 2020; Lu et al., 2024;
Zhang et al., 2019). Coastal regions with intricate topography like the Cordillera mountain range, are influenced
by both coastal‐land distinctions and terrain, resulting in more intricate DCP attributes (Ruiz‐Hernández
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et al., 2021). In oceans, precipitation tends to peak in the morning and demonstrates a spatial‐temporal pattern of
offshore propagation (Aoki & Shige, 2024; Coppin & Bellon, 2019; Fang &Du, 2022; Li & Carbone, 2015). Mid‐
low latitude regions experience higher solar radiation than high‐latitude regions, leading to more pronounced
spatial heterogeneity in the DCP (Jeong et al., 2011).

Many metrics and methods have been developed to describe the spatial heterogeneity of the DCP. As the DCP is
essentially a description of distribution, using hourly discrete data directly for this purpose may not effectively
highlight the key aspects of interest. One common approach involves using the first‐order amplitude and phase
obtained from frequency domain transformations to characterize DCP (Dai, 2024; Dai et al., 2007; Hayden &
Liu, 2021; Jeong et al., 2011; Mao &Wu, 2012). However, this method simplifies the DCP to a sinusoidal model
and overlooks high‐frequency information. Another method, known as empirical orthogonal functions (EOF), has
also been utilized to capture spatial variations in DCP (Kikuchi & Wang, 2008; Lu et al., 2021; Wilks, 2011).
However, this method has limitations, as each spatial location must exhibit complete opposites from other lo-
cations, potentially limiting the detailed information provided (Covey et al., 2016). Moreover, interpreting the
raw DCP often requires a process of reconstruction. Additionally, parameters such as peak time, kurtosis,
skewness, and indicators based on precipitation differences over specific time periods are also used to describe
DCP (Deng et al., 2022; Jiang et al., 2017; Johnson, 2011; Lu et al., 2024; Yu et al., 2007).

Apart from the aforementioned description methods, clustering analysis has been used to extract the main patterns
of regional DCP, for example, Fuzzy C‐Means and K‐Means methods (Chen et al., 2009; Liu et al., 2021; Mu
et al., 2021; Wu et al., 2018; Yaqub et al., 2011). Although these methods can provide a more intuitive display of
regional DCP while retaining richer information, their clustering process is often challenging to interpret. Be-
sides, these methods have poor scalability because finer clustering cannot obtain any valuable information from
coarser clustering results. Hierarchical clustering differs from traditional clustering as it does not require a
predefined number of clusters; instead, it progressively merges or splits clusters based on the similarity between
data points. This clustering method naturally reflects the hierarchical structure of the data, facilitating an intuitive
understanding of relationships between data points. The clustering tree generated by hierarchical clustering
clearly displays the hierarchical relationships between data, making the clustering results more intuitive and
interpretable (Murtagh & Contreras, 2012).

Although clustering is an excellent method for describing DCP, it has not yet been applied at the global scale,
let alone hierarchical clustering. It is worth noting that clustering is also well‐suited for describing seasonal
differences in DCP. This is because after clustering annual DCP, we obtain a well‐trained model (classifier) that
can cluster summer and winter DCP. By comparing the differences in clustering results, we can intuitively un-
derstand the seasonal differences in DCP. In addition, the DCP involves three essential aspects, precipitation
amount, frequency, and intensity, which are commonly used to provide a more comprehensive description of
precipitation (Wu et al., 2018). Most existing studies primarily focus on the amount; however, they lack a
complete description of DCP. Besides, the seasonal differences in the DCP also lack intuitive global descriptions.
Summer precipitation receives greater attention than winter precipitation in studies of the DCP (Chen et al., 2018;
Giles et al., 2020; Mu et al., 2021; Song & Wei, 2021) and investigations into seasonal differences in the DCP
often rely on the one‐sided metrics (Dai, 2024; Deng et al., 2022; Hirose & Nakamura, 2005; Olaguera
et al., 2024; Yin et al., 2009). Hence, a comprehensive and intuitive clustering description of the global char-
acteristics of DCP, including amount, frequency, intensity and seasonality, is necessary for a better understanding
of precipitation mechanisms.

The study of DCP requires the use of sub‐daily data, specifically hourly data. While instrumental observation data
remains the gold standard for accuracy, data sets like Integrated Surface Data set (ISD), Hadley Center Integrated
Surface Data set (HadISD) and Global Sub‐Daily Rainfall (GSDR) (Dunn et al., 2012; Lewis et al., 2019; Smith
et al., 2011), which provide hourly instrument observation precipitation data, are predominantly available in the
United States, Europe, and Japan. However, a notable disparity exists in the time spans covered by different
stations, posing a challenge for global‐scale studies. The Integrated Multi‐satellitE Retrievals for GPM (IMERG)
and the European Center for Medium‐Range Weather Forecasts Reanalysis v5 (ERA5) (Hersbach et al., 2020;
Huffman et al., 2015) have been proven to have good capabilities in representing the DCP (Qin et al., 2021; Tan
et al., 2019; Zhang et al., 2022) and have garnered widespread use in research related to hourly precipitation,
including regional DCP and tropical cyclone precipitation (Fang & Du, 2022; Maulana et al., 2023; Tu
et al., 2022; Wang et al., 2023).
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Therefore, this study uses IMERG as the primary data source, combined with hierarchical clustering, to analyze
the diurnal cycle of precipitation amount, frequency, and intensity globally. Some results from the ERA5 data,
used for auxiliary validation, can be found in Supporting Information S1. Additionally, clustering is developed to
demonstrate the seasonal differences of the DCP. Finally, leveraging the interpretability of the hierarchical
approach, we delved into the decision‐making process underlying the global DCP clustering. Similar to climate
classification zones, our results of the information‐rich and intuitive maps of the DCP can provide values for sub‐
daily precipitation‐related research.

2. Materials and Methods
2.1. Data

The IMERG precipitation data utilized in this study spans from 2001 to 2020, featuring a spatial resolution of 0.1°
and a temporal resolution of 0.5 hr, it has been aggregated to a 1‐hr temporal resolution for this analysis. The
ERA5 precipitation data utilized in this study covers the period from 1979 to 2020, with a spatial resolution of
0.25° and a temporal resolution of 1 hr. To facilitate analysis, the data is converted from Coordinated Universal
Time (UTC) to Local Solar Time (LST). It's worth noting that due to reduced solar radiation in high‐latitude
regions, the DCP is less pronounced, and satellites encounter challenges in accurately estimating precipitation
in these areas. As a result, this study primarily focuses on the global mid‐low latitudes (60°N‐60°S). The elevation
and land‐sea boundary data are sourced from the Copernicus digital elevation model (Guth & Geoffroy, 2021).

2.2. Precipitation Amount, Frequency and Intensity

The diurnal cycle of precipitation (DCP) refers to the variations or cycles of precipitation within a natural day.
Amount, frequency, and intensity are three crucial aspects for describing precipitation behavior (Dai et al., 2007).
In this study, precipitation amount (PA), frequency (PF), and intensity (PI) used to describe the DCP are defined
as follows (Wu et al., 2018). For PA, we first calculate the hourly precipitation for each year, then average the
hourly precipitation over multiple years, and finally normalize it within a day to reflect diurnal variations. For PF,
we calculate the number of hours in local time where precipitation exceeding 0.1 mm/hr occurs and then
normalize it within a day. For PI, we normalize the quotient of PA and PF. The relevant formulas are as follows:

At = Normt( ∑

Ye

i=Ys

∑

Ni

j=0
Pi,j,t)

Ft = Normt( ∑

Ye

i=Ys

∑

Ni

j=0
Θ(Pi,j,t − 0.1) )

It = Normt(
At

Ft
)

In the equations, At, Ft, and It represent the PA, PF and PI at local time t, respectively. Normt is normalized over
24 hr of local time (divided by the average), Ys and Ye are the start and end years, andNi is the total number of days
in the i‐th year. i, j, and t denote the year, day, and local hour, respectively. Pi,j,t represents the precipitation
amount at the t‐th local hour of the j‐th day of the i‐th year. Θ(x) is the step function, taking the value 1 when x is
greater than or equal to 0, and 0 otherwise.

2.3. Hierarchical Clustering of Global Diurnal Precipitation Cycle

In this study, we employed the Bisecting K‐Means algorithm, a hierarchical variant of the K‐Means algorithm.
Our validation showed that the Bisecting K‐Means algorithm performed comparably to K‐Means, maintaining a
similar sum of squared errors (SSE). We opted for 8 clusters, as further increases yielded only marginal im-
provements in clustering performance, with a diminishing decrease in SSE (Figure S1 in Supporting Informa-
tion S1). This choice strikes an optimal balance between visualization clarity and clustering performance.

When partitioning samples, the Bisecting K‐Means algorithm selects the cluster with the largest SSE for further
division. After obtaining the final clustering results, we obtain a clustering binary tree that describes the clustering
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process (Di & Gou, 2018). When clustering global DCP, we can clearly understand the results of each binary split
of the clustering model, thereby gaining a clearer insight into the spatial differences in global DCP. Additionally,
after performing hierarchical clustering, we obtain a trained clustering model that can be applied to cluster other
samples. The Bisecting K‐Means clustering is implemented using Python's Scikit‐Learn library (Pedregosa
et al., 2011).

In this study, we conduct separate clustering analyses of the global annual PA, PF, and PI derived from IMERG
data sets. Subsequently, we use the clustering models trained on the annual DCP to the summer (AMJJAS in the
Northern Hemisphere and ONDJFM in the Southern Hemisphere) and winter (ONDJFM in the Northern
Hemisphere and AMJJAS in the Southern Hemisphere) to determine seasonal differences. Finally, leveraging the
interpretability of the hierarchical method, we discuss the clustering process of the global diurnal cycle of pre-
cipitation amount (DCPA) and its underlying basis.

3. Results and Discussion
3.1. Global Diurnal Cycle of Precipitation Amount, Frequency and Intensity

From the clustering results of the global diurnal cycle of precipitation amount (DCPA, Figure 1a), we can gain a
more intuitive understanding of information such as the peak hour, peak values, and uniformity of global DCPA.
The findings underscore that regions characterized by coastal and topographical complexity exhibit intricate
patterns in global DCPA. Specifically, significant clustering transitions can be observed from coastlines to
adjacent areas and from high‐altitude regions to their surroundings. These areas encompass Central America,
Central Africa, the Qinghai‐Tibet Plateau and its environs, maritime continents, and their coastal waters. In the
western mountains of the United States, the highest elevations correspond to cluster eight on the clustering map.
As the elevation decreases eastward, the clusters transition progressively to clusters 7 and 6. A similar phe-
nomenon is observed on the Tibetan Plateau. In certain mid‐ and low‐latitude marine regions, clear transitions
between clusters are evident on either side of the coastline as the distance varies. The comparison of clustering
results and specific terrestrial and marine topographic features (land characterized by elevation, sea by distance
from the coastline) in regions with complex DCP can be referenced in the supplementary information (Figure S2
in Supporting Information S1). This complexity arises due to the abundant solar radiation and significant thermal
capacity gradients in these regions (Ruiz‐Hernández et al., 2021; Wang et al., 2023).

Taking into account the specific diurnal pattern for each cluster, in low‐latitude coastal land, precipitation mainly
occurs during the afternoon and evening, with a notable cluster transition in DCPA from coastal to inland regions
(from cluster 8 to 7 to 6 in Figure 1a). This transition is marked by a gradual decline in peak values and a shift in
the peak hour toward later times. High‐altitude areas exhibit an extreme afternoon precipitation peak similar to
that of coastal land. As the transition to lower altitudes occurs, precipitation shows a later peak time and greater
uniformity. Marine areas exhibit a more uniform DCPA pattern, characterized by distinct nighttime peaks along
coastlines and transitioning toward offshore zones (from cluster 4 to 3 to 1 in Figure 1a). The variation in the
proportion of different clusters with distance from the coastline can be found in the supplementary information
(Figure S3 in Supporting Information S1). These observations on cluster transition align with previous research,
illustrating the behavior of precipitation on both sides of the coastline, with onshore propagation on the land side
and offshore propagation on the ocean side (Coppin & Bellon, 2019; Du & Rotunno, 2018; Fang & Du, 2022; Li
& Carbone, 2015). Clustering maps provide a clearer understanding of the global regions exhibiting this prop-
agation pattern.

While most clusters exhibit a single peak, multiple peaks are also observed. In cluster 4 of the DCPA, a primary
peak at 1 a.m. and a secondary peak at 9 a.m. are evident, primarily in nearshore waters and certain basins.
Additionally, our statistics indicate that multiple peaks are not predominant, accounting for only 6.7% of the total
samples. Therefore, the global‐scale clustering cannot directly capture all the details. The spatial distribution of
different types of multiple peaks (Figure S4 in Supporting Information S1) indicates that the highest number of
bimodal samples is found along the west coasts of Africa and South America, where precipitation is extremely
limited due to the influence of the Benguela Current and the Humboldt Current (Garreaud et al., 2010; Lima
et al., 2019). This phenomenon may be related to local meteorological conditions, ocean‐atmosphere interactions,
limitations of satellite precipitation or other factors that are not yet fully understood. It is also worth noting that the
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Figure 1.
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rise before the peak of DCPA is more intense compared to the decline after the peak especially in clusters 5, 6 and
7, which is a characteristic that the sinusoidal model associated with the amplitude‐phase method cannot capture.
This phenomenon aligns with previously observed asymmetries in precipitation processes, likely due to atmo-
spheric instability and the duration of precipitation events (Yu et al., 2013).

Similarly, the diurnal cycle of precipitation frequency (DCPF, Figure 1b) mirrors DCPA. However, compared to
DCPA and DCPF, the diurnal cycle of precipitation intensity (DCPI, Figure 1c) shows minimal discrepancies
between different clusters and presents a relatively uniform diurnal distribution. This indicates that DCPI
maintains uniformity across most global regions, exhibiting low spatial variability. Like satellite precipitation,
reanalysis precipitation demonstrates broadly similar characteristics in DCPA and DCPF (Figure S5 in Sup-
porting Information S1). Overall, the findings indicate intricate clustering patterns globally, and the precipitation
amount and frequency have stronger diurnal cycles than that of the precipitation intensity.

3.2. Seasonal Difference of Diurnal Precipitation Cycle

To better capture seasonal differences, the clustering in this section employs the model trained on clustering the
annual DCP, ensuring consistency with the clusters depicted in Figure 1a. Upon validation, the clustering model
trained on annual DCP exhibits acceptable performance on seasonal DCP samples across different latitude in-
tervals (Figures S6, S7, S8 in Supporting Information S1 for annual, summer and winter, respectively).

Figure 2 illustrates the global spatial distribution of DCPA during the summer (a) and winter (b), calculated using
satellite data. Compared to index‐based descriptions, the DCP clustering maps we provide for different seasons
offer a more intuitive way to understand the seasonal characteristics and differences in DCP at any given location,
while also allowing for a comprehensive examination of these seasonal differences on a global scale.

The results indicate that globalDCPAexhibits significant seasonal differences, with 68.0% of land areas and 51.7%
of sea areas undergoing seasonal cluster transitions (area‐weighted average). Considering the varying degrees of
transition across different clusters, for instance, the significant shift from cluster 1 to 8 compared to the modest
transition from cluster 1 to 2 in DCPA clustering, the supplementary information (Figure S9 in Supporting In-
formation S1) provides the regions that experienced transitions and the Euclidean distances between the summer
and winter clusters, offering a more comprehensive perspective on the seasonal differences in DCPA. In certain
areas, DCPA shows notable seasonal differences. For example, the southeastern coast of China, the Florida
Peninsula, and the western mountains of the United States transition from clusters 5, 6, 7, and 8 (with relatively
distinct peaks) in summer to clusters 1, 2, and 3 (relatively uniform) in winter. The northern part of the Eurasian
continent transitions from predominantly cluster 5 to predominantly cluster 2. Overall, from summer to winter, the
proportions of DCPA clusters with pronounced diurnal variation characteristics (concentrated precipitation)
decrease, and this difference ismore evident in regions above 15° latitude. This seasonal difference exhibited by the
clustering supports previous research findings (Bedoya‐Soto et al., 2019; Chen et al., 2009; Deng et al., 2022;
Olaguera et al., 2024; Xiao et al., 2018; Zhao et al., 2022). This is because lower solar radiation in winter makes it
difficult to drive local wind and diurnal water vapor transport (Barman et al., 2021; Shen et al., 2021). Additionally,
at lower latitudes, the transition rate is relatively lower compared to other latitudes due to the indistinct seasonal
boundaries in these regions. For an overview of seasonal clustering transitions across different latitude intervals,
the Sankey diagram in the supplementary information (Figure S10 in Supporting Information S1) can be consulted.
Global DCPF shows similar seasonal differences compared to DCPA (Figure S11 in Supporting Information S1).
Given the minimal diurnal variation, seasonal differences in DCPI are not particularly meaningful to study. In
addition, reanalysis precipitation demonstrates similar characteristics of global DCPA and DCPF in both summer
and winter, including seasonal differences in land areas with latitudes higher than approximately 15° (Figures S12
and S13 in Supporting Information S1).

Figure 1. (a) Global diurnal cycle of precipitation amount. Different colors represent different clusters, while different levels of transparency represent different annual
precipitation amount (sum of 24 hr). The rose diagrams below show the specific DCP patterns for each cluster. The radius represents the average of normalized hourly
precipitation amount, while the angle corresponds to different local solar times. The shaded bar highlights the peak hour (same for later figures). (b) Global diurnal cycle
of precipitation frequency. Different colors represent different clusters, while different levels of transparency represent different annual precipitation frequency.
(c) Global diurnal cycle of precipitation intensity. Different colors represent different clusters, while different levels of transparency represent different daily
precipitation intensity.
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3.3. Hierarchical Clustering Process of Diurnal Precipitation Cycle

Figure 3 illustrates the clustering process of global DCPA.When the number of clusters is set to 8, the hierarchical
clustering method naturally progresses through different clustering levels from 1 to 8 because of its binary nature.
As a result, the attribution in hierarchical clustering can be inherited across various levels. In contrast, non‐
hierarchical clustering methods require independent specification of cluster numbers from 1 to 8, with no rela-
tionship between different clustering levels (Figure S14 in Supporting Information S1). Due to sensitivity to
initial conditions, the instability of non‐hierarchical methods is also observed, evidenced by an anomalous red
thread at the junction of two blue regions over the ocean, which does not correspond to the actual conditions
(Figure S15 in Supporting Information S1).

The hierarchical clustering process helps us understand the principles of model partitioning. By combining
similar external features within each cluster (such as terrain, land‐sea relationships, etc.), we can explore the
multiple factors that influence the DCPA. The logic here is that DCP determines clustering, and the external
environment determines DCP. Therefore, the external environment determines clustering. Given the clustering
results at different levels, we can infer the significance of the external environment in reverse.

Figure 2. Global diurnal cycle of precipitation amount, (a) summer, (b) winter. Different colors represent different clusters, while different levels of transparency
represent different annual precipitation amount.
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During the first split, the model minimizes SSE by selecting the two most distinct clusters. In addition to the
hourly precipitation itself, samples within the same cluster exhibit other common characteristics. For instance,
cluster 2‐2 shares similar spatial features, predominantly distributed over land and local maximum altitudes,
whereas cluster 2–1 is primarily found over oceans or other terrestrial regions. Given the extensive impact of
topography and land‐sea relationships on precipitation, combined with these clustering results, we can infer that
the primary factors influencing the spatial heterogeneity of global DCPA are the extreme thermal contrasts be-
tween land and sea, as well as between mountains and valleys, which is also supported by previous EOF‐based
studies (Lu et al., 2021; Pritchard & Somerville, 2009; Teo et al., 2011).

Further subdivision reveals the primary factors influencing DCP variation within each respective cluster, which
are also significant factors affecting global DCPA. For the majority of oceans represented by cluster 2–1, the
distance from the coastline is a crucial factor influencing their DCP. Similarly, for the majority of land areas
represented by cluster 2‐2, both the distance from the coastline and elevation contrast may be key factors affecting
their DCP. These phenomena may be linked to the gravity waves and spatial scale of sea‐land breeze (Huang &
Wang, 2014; Rani et al., 2010; Short et al., 2019; Vincent & Lane, 2016; Yamanaka et al., 2018; Zhu et al., 2022).
In summary, the hierarchical method offers good interpretability for DCP clustering, facilitating the presentation
and comprehension of its clustering process, making it highly valuable in understanding high‐resolution spatial
differences and their causes of DCP.

Figure 3. The clustering process of the global diurnal cycle of precipitation amount. Different colors represent different clusters. The rose diagrams show the average for
each cluster.
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4. Conclusions
Based on satellite data of hourly precipitation, we use a hierarchical method to objectively cluster the global
diurnal cycle of precipitation amount, frequency, and intensity, respectively, throughout the entire year, as well as
separately for summer and winter. The results suggest that areas characterized by complex coastal and topo-
graphical features display more intricate clustering patterns in the diurnal precipitation cycle. Clusters with
features such as peak value, peak time, and uniformity undergo significant transitions from coastlines to adjacent
areas and from high‐altitude regions to their surroundings, particularly noticeable in low‐latitude regions. The
significant inter‐cluster differences indicate that the precipitation amount and frequency have stronger diurnal
cycles than that of the precipitation intensity globally. The seasonal transitions of clusters suggest that the global
diurnal cycle of precipitation exhibits significant seasonal differences. The hierarchical clustering process of the
global diurnal cycle of precipitation demonstrates better interpretability. Compared to existing studies, our results
fill gaps in the research landscape concerning diurnal precipitation cycle clustering, encompassing precipitation
amount, frequency, intensity, and seasonality on a global scale. Our information‐rich global maps of the diurnal
precipitation cycle can provide valuable insights into the mechanisms underlying the diurnal cycle of precipi-
tation, sub‐daily simulation by climate models and the impacts of the diurnal precipitation cycle on nature and
society.
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