
1.  Introduction
Hydrological time series are analyzed for investigating the variability of hydrological processes (Machiwal & 
Jha, 2012). Apart from deterministic characteristics, including abrupt changes, trends, and periodicities (Sang 
et al., 2015; Xie et al., 2019; Zhang et al., 2014), dependence (also called persistence) is another important intrin-
sic characteristic of hydrological processes (Bomblies et al., 2008; Iliopoulou et al., 2018; Markonis et al., 2018). 
Generally, dependence means that the value of a hydrological variable at a certain time is not random but related 
to its previous values (Moravej & Khalili, 2015). For example, drought or flood events usually have a propensity to 
occur in clusters (Moravej & Khalili, 2015; Paschalis et al., 2012; Tan et al., 2017). Determining the dependence 
characteristics of hydrological processes is necessary to understand their complex variations and for hydrological 
calculation and design (Debele et al., 2017; Jiang et al., 2015; Zhao et al., 2018), simulation, and prediction (Ye 
et al., 2018), as well as water management and planning (Hodgkins et al., 2017; Koirala et al., 2011).

Both short- and long-term dependencies are investigated for hydrological time series analysis. For a stationary 
hydrological time series, the methods to detect its short-term dependence are mainly divided into non-parametric 
methods and parametric methods. Typical non-parametric methods include Spearman rank order serial correla-
tion test (Zar, 1972) and rank von Neumann ratio (Gaonkar et al., 2021). Parametric methods, such as the autocor-
relation coefficient test (Fathian et al., 2016), are commonly used for detecting short-term dependence. The Hurst 
coefficient is a dominant measurement available for quantifying long-term dependence (Markonis et al., 2018). 
In this study, we focus on the short-term dependence of hydrological processes.
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The Auto-Regressive (AR) models and Moving Average (MA) models, as well as their combination of 
Auto-regressive Moving Average (ARMA) models, are one important type of regression-based models (Hossain 
et al., 2020). They have been widely used to intuitively describe the short-term dependence within a time series 
(Markonis et al., 2018) and describe the statistical characteristics of residual series after removing the determin-
istic components in the original time series, due to their inherent computational efficiency (Yue & Pilon, 2003). 
Regarding the applications of this type of model, the key issues are to determine the suitable model order and 
estimate parameters (Han et al., 2017; Moon et al., 2021; Peng et al., 2009). The methods commonly used to esti-
mate parameters include the least square estimation, moment estimation (Yule-Walker equations), and maximum 
likelihood estimation. However, the more important issue in using these models is the determination of suitable 
model order. The efficiencies of these models critically depend on the selection of appropriate model order, as 
lower model orders would provide inadequate information, while higher model orders could drastically increase 
complexity and cause model overfitting problems (Khan et al., 2021; Khorshidi et al., 2011).

The methods used to determine the optimal model order of regression-based models can be roughly divided into 
two categories: information criterion-based methods and linear algebra methods. The former mainly include 
Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC), which have been used widely 
in hydrology; the latter include Singular Value Decomposition (SVD) method, Levinson-Durbin methods, etc. 
Sometimes we also directly consider the statistical characteristics of the autocorrelation function and (or) partial 
correlation function of a time series for determining the suitable model order. When handling small data samples, 
AIC tends to select more complex models with a larger model order, due to a lower degree of punishment 
(Zhang, 2007). The accuracy of BIC in the determination of the optimal model order is always affected by the 
number of data samples (Lin et al., 2017). Comparatively, the SVD method is less sensitive to the data length 
and can be applied to shorter time series; however, it needs to solve a high-order algebraic equation for obtaining 
eigenvalues, which would significantly increase the complexity of calculation, and there may be a large bias when 
judging small model orders (Fort et al., 1995). For the Levinson-Durbin method, it is still based on AIC and BIC 
for the determination of the suitable model order, by first applying the Levinson-Durbin algorithm for param-
eter estimation (Franke, 1985; Liu et al., 2012). Thus, it is still a challenge to accurately determine a suitable 
model order for describing the short-term dependence of hydrological time series by using these regression-based 
models.

Generally, the determination of a suitable model order is directly determined by the dependent component of the 
time series to be analyzed. The essence of identifying the dependent component is to evaluate its statistical signif-
icance. In practical applications, the lag-1 autoregressive coefficient was often used to quantify the dependence of 
a time series (Sagarika et al., 2014). Comparing the estimated lag-1 autoregressive coefficient with the threshold 
value at a certain significance level, it can be judged whether the dependence exists (i.e., passing the significance 
test) or not (Serinaldi & Kilsby, 2016). However, this approach neglects the dependence with higher orders, such 
as that described by lag-2 and lag-3 AR models. Furthermore, it cannot classify the different significance levels 
of the dependence characteristics, which causes difficulty in linking the identification of dependent components 
to the determination of the suitable model order for AR, MA, or ARMA models.

Considering that the dependent component is part of the original time series, we can quantify the correlation 
between the dependent component and the original time series, which can be an effective approach to quantify-
ing the dependence characteristics. Based on this idea, the objective of this study is to propose a new method, 
called correlation coefficient-based information criterion (CCIC), to evaluate the dependence characteristics of a 
hydrological time series and further determine the suitable model order for describing it. Combining the effective 
index of correlation coefficient (CC) and the information criterion, CCIC has a similar form as AIC and BIC. A 
bigger CC value usually represents a larger proportion of the dependent component in the original time series. 
The advantage of CCIC is to simultaneously identify the dependent component, assess the significant degree of 
dependence, and further determine the suitable model in order to describe it using AR, MA, or ARMA models. 
To this end, Section 2 explains the relationship between the correlation coefficient and serial dependence, based 
on which the CCIC is developed. In Section 3, different types of synthetic data are generated by the Monte-Carlo 
method, which is used to verify the efficacy of the proposed CCIC, and further evaluate the influence of main 
factors on the results. CCIC is then applied to investigate the short-term dependence characteristics in annual 
precipitation from 520 stations in China in Section 4, where it is compared with other criteria to illustrate its 
superiority. Finally, conclusions are given in Section 5.
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2.  Correlation Coefficient-Based Information Criterion
2.1.  Relationship Between Correlation Coefficient and Serial Dependence

Before quantifying the dependence characteristics of a hydrological time series, it is necessary to first remove 
deterministic components from the original time series. The abrupt change component can be identified by the 
Pettitt method or the Brown-Forsythe method (Militino et al., 2020; Ryberg et al., 2020; Wu et al., 2019; Xie, 
Wu, et al., 2018). The trend component can be detected by the Spearman rank correlation test, Kendall rank 
correlation test, or linear trend correlation coefficient test (Asfaw et  al.,  2018; Sang, Sun, et  al.,  2018; Y.Y. 
Xie et al., 2016; Yue et al., 2002). The periodic component can be identified by the power spectrum analysis, 
harmonic analysis, maximum entropy spectrum analysis, or discrete wavelet spectrum (Sang et al., 2021; Xie 
et al., 2021). For the residual time series xt (t = 1, 2,…, p) which may include dependent components, it can be 
described by a suitable AR, MA, or ARMA model.

Here, we take the AR model as an example to describe the derivation of the relationship between the correla-
tion coefficient and serial dependence. The residual time series xt can be described by an autoregressive model 
AR(p)  as:

𝑥𝑥𝑡𝑡 = 𝑢𝑢 + 𝜑𝜑1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) + 𝜑𝜑2 (𝑥𝑥𝑡𝑡−2 − 𝑢𝑢) + ⋅ ⋅ ⋅ + 𝜑𝜑𝑝𝑝 (𝑥𝑥𝑡𝑡−𝑝𝑝 − 𝑢𝑢) + 𝜀𝜀𝑡𝑡� (1)

where u is the mean of xt; φ1, φ2, …, φp are the autoregressive coefficients; p is the order of the AR model; εt is 
the independent pure random variable with zero mean value and variance 𝐴𝐴 𝐴𝐴2

𝜀𝜀 ; and εt is independent from xt.

If the dependent component 𝐴𝐴 𝐴𝐴1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) + 𝜑𝜑2 (𝑥𝑥𝑡𝑡−2 − 𝑢𝑢) + ⋅ ⋅ ⋅ + 𝜑𝜑𝑝𝑝 (𝑥𝑥𝑡𝑡−𝑝𝑝 − 𝑢𝑢) is denoted as 𝐴𝐴 𝐴𝐴𝑡𝑡 , and the random 
component 𝐴𝐴 𝐴𝐴 + 𝜀𝜀𝑡𝑡 is denoted as 𝐴𝐴 𝐴𝐴𝑡𝑡 , then xt can be expressed as:

𝑥𝑥𝑡𝑡 = 𝜂𝜂𝑡𝑡 + 𝑢𝑢𝑡𝑡� (2)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝑡𝑡 are independent, and 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑡𝑡) = 𝑢𝑢 , 𝐴𝐴 𝐴𝐴 (𝑢𝑢𝑡𝑡) = 𝑢𝑢 , and 𝐴𝐴 𝐴𝐴 (𝜂𝜂𝑡𝑡) = 0 .

The correlation between the time series xt and the dependent component 𝐴𝐴 𝐴𝐴𝑡𝑡 can be described by the correlation 
coefficient r:

𝑟𝑟 =

𝑛𝑛
∑

𝑡𝑡=1

(

𝑥𝑥𝑡𝑡 − 𝑥𝑥
) (

𝜂𝜂𝑡𝑡 − 𝜂𝜂
)

√

𝑛𝑛
∑

𝑡𝑡=1

(

𝑥𝑥𝑡𝑡 − 𝑥𝑥
)2

𝑛𝑛
∑

𝑡𝑡=1

(

𝜂𝜂𝑡𝑡 − 𝜂𝜂
)2

� (3)

Taking 𝐴𝐴 𝑥𝑥 = 𝑢𝑢 , 𝐴𝐴 𝜂𝜂 = 0 , and 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝜂𝜂𝑡𝑡 + 𝑢𝑢𝑡𝑡 , Equation 3 can be simplified as:

𝑟𝑟 =

𝑛𝑛
∑

𝑡𝑡=1

𝜂𝜂𝑡𝑡
2 +

𝑛𝑛
∑

𝑡𝑡=1

(𝑢𝑢𝑡𝑡 − 𝑢𝑢) 𝜂𝜂𝑡𝑡

√

𝑛𝑛
∑

𝑡𝑡=1

(

𝑥𝑥𝑡𝑡 − 𝑥𝑥
)2

𝑛𝑛
∑

𝑡𝑡=1

(

𝜂𝜂𝑡𝑡 − 𝜂𝜂
)2

� (4)

with

𝑛𝑛
∑

𝑡𝑡=1

(𝑢𝑢𝑡𝑡 − 𝑢𝑢) 𝜂𝜂𝑡𝑡 = 𝑛𝑛𝑛𝑛 (𝑢𝑢𝑡𝑡𝜂𝜂𝑡𝑡 − 𝑢𝑢𝑢𝑢𝑡𝑡) = 𝑛𝑛𝑛𝑛 (𝑢𝑢𝑡𝑡)𝐸𝐸 (𝜂𝜂𝑡𝑡) − 𝑛𝑛𝑛𝑛𝑛𝑛 (𝜂𝜂𝑡𝑡) = 0� (5)

Now r can be described as:

𝑟𝑟
2
=

𝜎𝜎2

𝜂𝜂

𝜎𝜎2

𝑥𝑥

� (6)

where 𝐴𝐴 𝐴𝐴𝜂𝜂 (𝐴𝐴 𝐴𝐴𝑥𝑥 ) is the standard deviation of 𝐴𝐴 𝐴𝐴𝑡𝑡 (𝐴𝐴 𝐴𝐴𝑡𝑡 ).

The variance 𝐴𝐴 𝐴𝐴𝑥𝑥
2 of 𝐴𝐴 𝐴𝐴𝑡𝑡 is expressed as the sum of the variance 𝐴𝐴 𝐴𝐴𝜂𝜂

2 of dependent component and the variance 𝐴𝐴 𝐴𝐴𝑢𝑢
2 

of pure random component:
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𝜎𝜎𝑥𝑥
2
= 𝜎𝜎𝜂𝜂

2
+ 𝜎𝜎𝑢𝑢

2� (7)

Combining Equation 6 and Equation 7, one gets:

𝑟𝑟
2 = 1 −

𝜎𝜎𝑢𝑢
2

𝜎𝜎𝑥𝑥
2

� (8)

In order to establish the relationship between the correlation coefficient r and the AR model's parameters, the 
following is further derived.

Multiplying both sides of Equation 1 by 𝐴𝐴 𝐴𝐴𝑡𝑡 − 𝑢𝑢 , and taking their expectation (E), one gets:

� (���� − ���) = �1� [(��−1 − �) (�� − �)] + �2� [(��−2 − �) (�� − �)]

+⋯ + ���
[

(��−� − �) (�� − �)
]

+ � (���� − ���)
� (9)

Dividing both sides of Equation 9 by 𝐴𝐴 𝐴𝐴2

𝑥𝑥 , and considering that

𝐸𝐸 (𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡)

𝜎𝜎2
𝑥𝑥

=
𝐷𝐷(𝑥𝑥) + 𝑢𝑢2

𝜎𝜎2
𝑥𝑥

,
𝐸𝐸 [(𝑥𝑥𝑡𝑡−𝑖𝑖 − 𝑢𝑢) (𝑥𝑥𝑡𝑡 − 𝑢𝑢)]

𝜎𝜎2
𝑥𝑥

= 𝜌𝜌𝑖𝑖 (𝑖𝑖 = 1, 2,⋯, 𝑝𝑝)� (10)

we can obtain:

1 = 𝜌𝜌1𝜑𝜑1 + 𝜌𝜌2𝜑𝜑2 +⋯ + 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃 +
𝐸𝐸 (𝑢𝑢𝑡𝑡𝑥𝑥𝑡𝑡) − 𝑢𝑢2

𝜎𝜎2
𝑥𝑥

� (11)

as

𝐸𝐸 (𝑢𝑢𝑡𝑡𝑥𝑥𝑡𝑡) = 𝐸𝐸 (𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑡𝑡𝜂𝜂𝑡𝑡) = 𝐸𝐸 (𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡) = 𝜎𝜎
2

𝑢𝑢 + 𝑢𝑢
2� (12)

Equation 11 can be re-written as:

1 = 𝜌𝜌1𝜑𝜑1 + 𝜌𝜌2𝜑𝜑2 +⋯ + 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃 +
𝜎𝜎2

𝑢𝑢

𝜎𝜎2

𝑥𝑥

� (13)

Combining Equation 8 and Equation 13, we obtain:

𝑟𝑟
2
= 𝜌𝜌1𝜑𝜑1 + 𝜌𝜌2𝜑𝜑2 +⋯ + 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃� (14)

where the autoregressive coefficient 𝐴𝐴 𝐴𝐴𝑖𝑖 (𝑖𝑖 = 1, 2,⋯, 𝑝𝑝) can be estimated by the Yule-Walker equations (Li & 
Jayaweera, 2017):

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜑𝜑1

𝜑𝜑2

⋮

𝜑𝜑𝑝𝑝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝜌𝜌1 ⋯ 𝜌𝜌𝑝𝑝−1

𝜌𝜌1 1 ⋯ 𝜌𝜌𝑝𝑝−2

⋮ ⋮ ⋯ ⋮

𝜌𝜌𝑝𝑝−1 𝜌𝜌𝑝𝑝−2 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−1
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌𝜌1

𝜌𝜌2

⋮

𝜌𝜌𝑝𝑝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� (15)

Therefore, Equation 14 can be expressed by the autocorrelation coefficient 𝐴𝐴 𝐴𝐴𝑖𝑖(𝑖𝑖 = 1, 2,⋯, 𝑝𝑝) as:

𝑟𝑟
2 = (𝜌𝜌1 𝜌𝜌2 ⋯ 𝜌𝜌𝑝𝑝)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝜌𝜌1 ⋯ 𝜌𝜌𝑝𝑝−1

𝜌𝜌1 1 ⋯ 𝜌𝜌𝑝𝑝−2

⋮ ⋮ ⋯ ⋮

𝜌𝜌𝑝𝑝−1 𝜌𝜌𝑝𝑝−2 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−1
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜌𝜌1

𝜌𝜌2

⋮

𝜌𝜌𝑝𝑝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� (16)

Since the autocorrelation coefficient 𝐴𝐴 𝐴𝐴𝑖𝑖(𝑖𝑖 = 1, 2,⋯, 𝑝𝑝) is an indicator of the degree of linear dependence in a 
hydrological time series, it can be used as a preliminary approach to judging whether the time series exhibits 
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dependence characteristics or not. Moreover, Equation 16 shows that the correlation coefficient r between the 
original time series and its dependent component has already considered the effect of lag-1 to lag-p autocorre-
lations. Therefore, the correlation coefficient r can be used to judge the dependence of hydrological time series, 
and further to assess its degree of dependence by comparing it with a threshold r at a certain significance level 
(such as 5%).

It should be noted that if the MA or ARMA model is used to describe the residual time series xt, its equation 
(Equation A1 and (B1), respectively) can be used to substitute Equation 1, and then the relationship between the 
correlation coefficient r and the model's parameters can also be derived accordingly (shown in Equations A9 and 
B14, respectively), as shown in the steps in Appendix A and B, respectively. As a result, these derivations indicate 
that the correlation coefficient r is closely related to serial dependence, and thus it can be a useful indicator to 
judge the dependence characteristics of hydrological time series as a basis of the CCIC proposed in the following 
to further determine a suitable model order to describe the dependent components.

2.2.  Determination of Suitable Model Order by CCIC

The description of the dependent component in a hydrological time series by regression-based models usually 
contains two parts: the estimation of parameters, and the determination of the suitable model order. In this study, 
we focus on the latter. Both AIC and BIC are commonly used for the determination of model order. AIC, also 
known as the minimum information criterion, was proposed by Akaike (1973) and is an established theory for 
AR models (Wang et al., 2018). It was further extended to determine the order of ARMA models as well as mixed 
regression models. AIC is a combination of the maximum likelihood method and information theory, in which 
the information theory is embodied in the application of Kullback-Leibler (K-L) relative entropy expressed as 
logarithmic likelihood ratio (Huang et al., 2016). If the order of a regression model is p, the general form of AIC 
is defined as:

AIC(𝑝𝑝) = −2 ln(𝐿𝐿(𝛽𝛽)) + 2𝑝𝑝� (17)

where 𝐴𝐴 𝛽𝛽  is the maximum likelihood estimation of parameters, and 𝐴𝐴 ln(𝐿𝐿(𝛽𝛽)) is the maximum logarithmic likeli-
hood function of the model. If the least square method is used to estimate the residual error function of AIC, then 
it can be described as (Aho et al., 2014):

AIC(𝑝𝑝) = ln 𝜎𝜎2
𝜀𝜀 +

2𝑝𝑝

𝑛𝑛
� (18)

where 𝐴𝐴 𝐴𝐴2

𝜀𝜀 is the variance of the residual error function, and n is the data length. When 𝐴𝐴 𝐴𝐴 → ∞ , the model order 
determined by AIC cannot converge to the true value according to the probability theory (Fishler et al., 2002). In 
order to obtain consistent estimation, Akaike (Wang et al., 2018) and Schwarz (Yang et al., 2021) proposed BIC 
according to the Bayesian principle:

BIC(𝑝𝑝) = ln 𝜎𝜎2
𝜀𝜀 +

ln 𝑛𝑛

𝑛𝑛
p� (19)

Compared with AIC, the BIC function also includes two parts, where ‘𝐴𝐴 ln 𝑛𝑛 ’ replaces the corresponding item ‘2’ 
in Equation 18. In general, 𝐴𝐴 ln 𝑛𝑛 𝑛𝑛 2 , thus for a certain time series, the order determined by BIC is often smaller 
than that determined by AIC.

As explained above, both Equation 18 and Equation 19 include two parts. The former is the variance of the 
residual error function, reflecting the fitting error of the model; the latter is a penalty term containing the length 
of time series and the model order, reflecting the uncertainty of the model. Obviously, high accuracy of model 
fitting is required in practical applications, but higher accuracy means a larger number of parameters which 
makes the model more complex and results more uncertain. Since both AIC and BIC balance the fitting residual 
error and uncertainty penalty, it may be logical to choose the optimal model order based on both and evaluate the 
corresponding parameters at the minimum point of the criterion. However, they have defects and cannot give a 
reliable determination of model orders in many situations, as discussed earlier.

Sampling errors may exist when calculating the correlation coefficients r in Equation 16 (and also in Equation A9 
and (B14)) for limited data samples. In order to judge the reliability of the correlation coefficient calculated, the 
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error of the correlation coefficient is usually estimated statistically (Maesono, 2005). Since the correlation coef-
ficient r can indicate the significance of the dependent component in a time series, its mean square error (𝐴𝐴 𝐴𝐴𝑟𝑟 ) can 
be regarded as an indicator of the fitting error of the dependent component, expressed as (Wilson, 2014):

𝜎𝜎𝑟𝑟 =
1 − 𝑟𝑟2

√

𝑛𝑛
� (20)

Along with the increase of model order, the mean square error 𝐴𝐴 𝐴𝐴𝑟𝑟 decreases, implying that the fitting degree 
between the original time series and its dependent component increases.

Besides, the information entropy index is widely used to quantify the disorder and information of data, which 
has a positive relationship with the uncertainty of variables (Castillo et al., 2015; Kong et al., 2015; Rajsekhar 
et al., 2015; Sang, Singh, et al., 2018; Singh, 2013). When investigating uncertainty, greater information entropy 
of time series indicates larger uncertainty (Koutsoyiannis, 2014; Singh, 2013). Information entropy is defined as:

𝐻𝐻(𝑋𝑋) = 𝐻𝐻 (𝑚𝑚1, 𝑚𝑚2, ..., 𝑚𝑚𝑛𝑛) = −𝑐𝑐

𝑛𝑛
∑

𝑖𝑖=1

(𝑚𝑚𝑖𝑖ln𝑚𝑚𝑖𝑖)� (21)

where X denotes any random variable, 𝐴𝐴 𝐴𝐴 (𝑚𝑚1, 𝑚𝑚2, ..., 𝑚𝑚𝑛𝑛) is the entropy function, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the probabil-
ity of the occurrence of the ith information state. For an information system with equal probability, there is 

𝐴𝐴 𝐴𝐴1 = 𝑚𝑚2 = ... = 𝑚𝑚𝑛𝑛 = 1∕𝑛𝑛 . c is a constant (generally taken as 1), and 𝐴𝐴 ln(⋅) is the natural logarithm.

Taking AR (1) and AR (2) models as an example again, the following functions are constructed in the form of 
information entropy, which are related to the model order and can reflect the uncertainty of the model:

𝐻𝐻(1) = −

(

1

𝑛𝑛
ln
1

𝑛𝑛

)

� (22)

𝐻𝐻(2) =
1

𝑛𝑛
ln
1

𝑛𝑛
−

2

𝑛𝑛
ln
2

𝑛𝑛
= −

(

1

𝑛𝑛
ln
1

𝑛𝑛
+

2

𝑛𝑛
ln
2

𝑛𝑛

)

� (23)

H(2) contains the amount of information in H(1). When n >> p, the function indicating the uncertainty of the 
AR(p) model can be written as:

𝐻𝐻(𝑝𝑝) = −

𝑝𝑝
∑

𝑘𝑘=1

(

𝑘𝑘

𝑛𝑛

)

ln

(

𝑘𝑘

𝑛𝑛

)

� (24)

where p is the model order. For Equation 24, the H(p) value increases along with model order, which means that 
more parameters will lead to an increase in model uncertainty.

Considering Equation 20 and Equation 24 together, the two components have exactly the same roles as the two 
terms in AIC and BIC. Therefore, we can use the mean square error of the correlation coefficient to represent 
the fitting error of the model, and then use the functional form of information entropy as the penalty term. By 
combining them, we propose a new correlation coefficient-based information criterion (CCIC) for determining 
the suitable model order:

CCIC(𝑝𝑝) = ln𝜎𝜎2
𝑟𝑟 −

𝑝𝑝
∑

𝑘𝑘=1

(

𝑘𝑘

𝑛𝑛

)

ln

(

𝑘𝑘

𝑛𝑛

)

� (25)

For keeping a uniform format with AIC and BIC, the above formula can be further rewritten as:

CCIC(𝑝𝑝) = ln𝜎𝜎2
𝑟𝑟 +

1

𝑛𝑛

𝑝𝑝
∑

𝑘𝑘=1

𝑘𝑘(ln 𝑛𝑛 − ln 𝑘𝑘)� (26)

Being similar to AIC and BIC, when the CCIC function gets its minimum value, the corresponding order p is 
taken as the best order for the AR model to be used. Moreover, it should be pointed out that Equation 20 and 
Equation 26 can also be directly used for the MA and ARMA models, just substituting p by q and p + q, respec-
tively. Thus, the proposed CCIC can be applicable to these regression-based models.
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Overall, the specific steps of determining the suitable order by CCIC for regression-based modeling of the 
dependent components are explained as follows:

1.	 �Identify the deterministic components in the original time series, including abrupt changes, trends, and peri-
odicities, and remove them to obtain the residual time series 𝐴𝐴 𝐴𝐴𝑡𝑡 ;

2.	 �Draw the autocorrelation coefficient graph and partial correlation coefficient graph of 𝐴𝐴 𝐴𝐴𝑡𝑡 . If the autocorrela-
tion coefficient graph is tailed (truncated) and the partial correlation coefficient graph is truncated (tailed), 
then it is a preliminary indication that there are dependent components in 𝐴𝐴 𝐴𝐴𝑡𝑡 , and an AR (MA) model is chosen 
to describe them; if both the autocorrelation coefficient graph and the partial correlation coefficient graph are 
tailed, then an ARMA model is chosen to describe the dependent components in 𝐴𝐴 𝐴𝐴𝑡𝑡 ;

3.	 �Do the independence test on 𝐴𝐴 𝐴𝐴𝑡𝑡 . If the result shows that the series 𝐴𝐴 𝐴𝐴𝑡𝑡 is random, the model order is zero; other-
wise, the existence of dependent components is confirmed, and then the following analysis;

4.	 �Gradually increase the model order p from 1 and estimate the chosen model's parameters by the least square 
method. The corresponding correlation coefficients rp between the estimated dependent component 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝑥𝑥𝑡𝑡 
are calculated;

5.	 �For each model order p, calculate the CCIC value using Equation 26. When CCIC obtains the minimum value, 
the corresponding correlation coefficient is denoted as r*, and the corresponding model order is denoted 
as  p*;

6.	 �Take p* as the estimated model order, and use the chosen model to describe the time series 𝐴𝐴 𝐴𝐴𝑡𝑡 , and take the 
difference between 𝐴𝐴 𝐴𝐴𝑡𝑡 and the modeling results as the residual error;

7.	 �Do the same analysis of the residual error following step (3). If the residual error still includes a dependent 
component, set p* = p* + 1 to re-extract the residual error following step (6) and update r* accordingly, until 
the residual error shows independent characteristics;

8.	 �Finally, the reasonability of the most suitable model order p* is confirmed, and the significance of the depend-
ent component is confirmed by comparing r* with the threshold r at the chosen significance level (5% level 
is used in this study).

Besides, Figure 1 also shows the flowchart for determining the suitable model order by the proposed CCIC.

3.  Verification of CCIC by Monte-Carlo Experiments
3.1.  Rationality of Correlation Coefficient as an Index for Quantifying Dependence

The above derivations illustrate that the correlation coefficient r between the original time series and its dependent 
components can be used to quantify the dependence of hydrological time series. Here, we design the Monte-Carlo 
experiments by taking the first-order, second-order, and third-order AR models as examples, to validate the reli-
ability of the derived relationship between correlation coefficient r and serial dependence.

For the first-order AR model (i.e., AR(1) model), its expression can be written as 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝜑𝜑1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) + 𝑢𝑢𝑡𝑡 . Based 
on the Yule-Walker equations, we obtain 𝐴𝐴 𝐴𝐴1 = 𝜑𝜑1 and insert into Equation 14, then 𝐴𝐴 𝐴𝐴2 can be shown as:

𝑟𝑟
2
= 𝜑𝜑

2

1
= 𝜌𝜌

2

1
� (27)

We use the Monte-Carlo method to generate synthetic time series that follows the Pearson-III probability distri-
bution, which is widely considered for hydrological frequency analysis. Each time series has the same length n 
of 1,000, initial value 𝐴𝐴 𝐴𝐴1 = 100 , mean value 𝐴𝐴 𝐴𝐴 = 100 , variation coefficient 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 = 0.2 , and skewness coefficient 

𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 = 0.4 . The specific steps are described below:

�1.	� Generate the pure random series 𝐴𝐴 𝐴𝐴𝑡𝑡 that satisfy the above conditions and generate the dependent series 𝐴𝐴 𝐴𝐴𝑡𝑡 by 
setting its autoregressive coefficients 𝐴𝐴 𝐴𝐴1 as certain values. Here, we set 18 situations as 𝐴𝐴 𝐴𝐴1  =  𝐴𝐴 ± 0.1,±0.2, ...,±0.9 , 
respectively;

�2.	� Get the synthetic time series xt by combining 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴𝐴1 for each situation;
�3.	� Use Equation 3 to calculate the correlation coefficient 𝐴𝐴 𝐴𝐴𝑏𝑏 (b = 1,2,…18) between 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝑡𝑡 after removing the 

random series 𝐴𝐴 𝐴𝐴𝑡𝑡 from 𝐴𝐴 𝐴𝐴𝑡𝑡 . Each case is repeated 1,000 times (i.e., i = 1,2,…,1,000) to ensure the stability of 
results, and the average value of 𝐴𝐴 𝐴𝐴𝑏𝑏 in each group of experiments is calculated as:
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𝑟𝑟𝑏𝑏 =
1

1000

1000
∑

𝑖𝑖=1

𝑟𝑟𝑖𝑖𝑖𝑖(𝑏𝑏 = 1, 2, ...18)� (28)

�4.	� Under the stability condition (Nagakura, 2009) of AR(1) model with 𝐴𝐴 |𝜑𝜑1| < 1 , the correlation coefficient can 
be directly calculated by Equation 27, which is denoted as 𝐴𝐴 𝐴𝐴𝑎𝑎 (a = 1,2,…18);

�5.	� The relative error between 𝐴𝐴 𝐴𝐴𝑎𝑎 and 𝐴𝐴 𝐴𝐴𝑏𝑏 is calculated as: 𝐴𝐴 𝐴𝐴 =

(

|𝑟𝑟𝑏𝑏−𝑟𝑟𝑎𝑎|

𝑟𝑟𝑎𝑎

)

× 100 (%) .

The AR(2) model is expressed as: 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝜑𝜑1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) + 𝜑𝜑2 (𝑥𝑥𝑡𝑡−2 − 𝑢𝑢) + 𝑢𝑢𝑡𝑡 , with 𝐴𝐴 𝐴𝐴1 =
𝜑𝜑1

1−𝜑𝜑2

 and 𝐴𝐴 𝐴𝐴2 =
𝜑𝜑2
1

1−𝜑𝜑2

+ 𝜑𝜑2 
from the Yule-Walker equations in Equation 14, we can obtain Equation 29:

𝑟𝑟
2 =

𝜑𝜑2

1
(1 + 𝜑𝜑2)

1 − 𝜑𝜑2

+ 𝜑𝜑
2

2
=

(1 − 2𝜌𝜌2) 𝜌𝜌
2

1
+ 𝜌𝜌2

2

1 − 𝜌𝜌2
1

� (29)

Similarly, for the AR(3) model, we can also obtain the following equation:

�2 =
�1 (�1 + �2�3)

1 − �2 − �1�3 − �2
3

+
�2

(

�2
1 + �1�3 − �2

2 + �2
)

1 − �2 − �1�3 − �2
3

+
�3

(

�3
1 + �2

1�3 − �1�2
2 + 2�1�2 − �1�2

3 + �2
2�3 − �2�3 − �3

3 + �3
)

1 − �2 − �1�3 − �2
3

=
−�1

(

−�31 + �3�21 + �1�22 − �1�2 + �1 − �2�3
)

(�2 − 1)
(

−2�21 + �2 + 1
) +

�2
(

−�21 − �1�3 + �22 + �2
)

−2�21 + �2 + 1

+
�3

(

�31 − �3�21 + �1�22 − 2�1�2 + �3
)

2�21�2 − 2�21 − �22 + 1

� (30)

Figure 1.  Flowchart of determining the suitable model order by the proposed correlation coefficient-based information 
criterion (CCIC), for regression-based modeling of the dependent components in hydrological time series.
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In the Monte-Carlo experiments, the parameters of AR models are set to satisfy the stability conditions, whose 
reasonable ranges were determined by the eigenvalue method in this study (Slawski & Hein, 2015). We randomly 
selected 18 associative groups of autoregressive coefficients, as explained above, and the relative errors under 
different situations were calculated based on the above steps. Results are given in Tables  1–3 show that the 
relative errors between ra and rb are all within 1.25% for all the three AR model situations. It indicates that Equa-
tion 14 is reliable and the correlation coefficient r can be used as an effective index to describe the dependence 
characteristics of time series.

3.2.  Verification of the Efficiency of CCIC

Here, we used the same synthetic time series generated in Section 3.1 to compare the accuracy of CCIC with that 
of AIC and BIC and illustrate the efficacy of CCIC. Taking AR(1), AR(2), and AR(3) models as examples again, 
the following steps were used for the experiments:

1.	 �Randomly generate the autoregressive coefficients 𝐴𝐴 𝐴𝐴1 of the dependent time series under stability conditions, 
and set the data length n as 50, 75, 100, 150, and 200, respectively;

2.	 �When n = 50, 𝐴𝐴 𝐴𝐴𝑡𝑡 is generated by combining the dependent time series with the random time series 𝐴𝐴 𝐴𝐴𝑡𝑡 following 
the assumptions in Section 3.1, with the initial value 𝐴𝐴 𝐴𝐴1 = 100 ;

3.	 �Predefine the model order range from 1 to 𝐴𝐴 𝐴𝐴∕3 + 1 (Jirak, 2012). We can identify the minimum value of the 
three criteria (CCIC, AIC, BIC) to select the corresponding optimal model orders based on the residual vari-
ance 𝐴𝐴 𝐴𝐴2

𝜀𝜀 and the correlation coefficient r between the AR-simulated time series and the original time series.
4.	 �To ensure the reliability of results, 1,000 synthetic time series with different values of 𝐴𝐴 𝐴𝐴1 are randomly gener-

ated. Follow steps (2) and (3) to count the number of models whose orders are evaluated as 1. By dividing the 
number by 1,000, we can obtain the accuracy of model order by the three criteria, respectively.

5.	 �Repeat the above steps and change the value of n to assess the accuracy of the three criteria. Take its average 
value as the accuracy of the first-order AR model from three criteria.

6.	 �Do the same analysis above for the AR(2) and AR(3) models to obtain the accuracy of results from the three 
criteria.

𝐴𝐴 𝐴𝐴1  𝐴𝐴 𝐴𝐴𝑎𝑎  𝐴𝐴 𝐴𝐴𝑏𝑏  𝐴𝐴 𝐴𝐴  𝐴𝐴 𝐴𝐴1 𝐴𝐴 𝐴𝐴𝑎𝑎  𝐴𝐴 𝐴𝐴𝑏𝑏  𝐴𝐴 𝐴𝐴  𝐴𝐴 𝐴𝐴1 𝐴𝐴 𝐴𝐴𝑎𝑎  𝐴𝐴 𝐴𝐴𝑏𝑏  𝐴𝐴 𝐴𝐴 

−0.9 0.9 0.898 0.23% −0.3 0.3 0.300 0.03% 0.4 0.4 0.399 0.34%

−0.8 0.8 0.798 0.20% −0.2 0.2 0.202 0.80% 0.5 0.5 0.499 0.22%

−0.7 0.7 0.699 0.17% −0.1 0.1 0.100 0.25% 0.6 0.6 0.597 0.47%

−0.6 0.6 0.599 0.10% 0.1 0.1 0.099 0.87% 0.7 0.7 0.696 0.53%

−0.5 0.5 0.499 0.29% 0.2 0.2 0.199 0.57% 0.8 0.8 0.796 0.45%

−0.4 0.4 0.399 0.21% 0.3 0.3 0.297 1.13% 0.9 0.9 0.896 0.46%

Table 1 
𝐴𝐴 𝐴𝐴𝑎𝑎, 𝐴𝐴 𝐴𝐴𝑏𝑏, and Their Relative Error 𝐴𝐴 𝐴𝐴 Under Different Parameters in AR(1) Model

𝐴𝐴 𝐴𝐴1  𝐴𝐴 𝐴𝐴2  𝐴𝐴 𝐴𝐴𝑎𝑎  𝐴𝐴 𝐴𝐴𝑏𝑏  𝐴𝐴 𝐴𝐴  𝐴𝐴 𝐴𝐴1  𝐴𝐴 𝐴𝐴2  𝐴𝐴 𝐴𝐴𝑎𝑎  𝐴𝐴 𝐴𝐴𝑏𝑏  𝐴𝐴 𝐴𝐴 

0.1 −0.8 0.801 0.798 0.38% −0.3 −0.7 0.711 0.710 0.24%

−0.7 0.2 0.880 0.878 0.29% −0.7 −0.5 0.643 0.642 0.08%

0.3 −0.4 0.446 0.446 0.07% 0.6 −0.8 0.825 0.822 0.29%

0.8 0.1 0.890 0.885 0.59% −0.1 −0.5 0.503 0.503 0.08%

0.6 −0.8 0.825 0.822 0.27% 0.2 −0.4 0.421 0.419 0.40%

0.6 −0.9 0.911 0.908 0.25% −0.2 0.7 0.847 0.840 0.77%

0.5 −0.5 0.577 0.576 0.16% −0.3 −0.1 0.289 0.292 0.79%

−0.2 −0.1 0.207 0.208 0.62% 0.5 0.1 0.562 0.558 0.59%

0.5 0.3 0.745 0.738 0.94% −0.5 0.2 0.644 0.643 0.27%

Table 2 
𝐴𝐴 𝐴𝐴𝑎𝑎, 𝐴𝐴 𝐴𝐴𝑏𝑏, and Their Relative Error 𝐴𝐴 𝐴𝐴 Under Different Parameters in AR(2) Model
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Table 4 shows the accuracy of correctly identifying the true order of AR models. For the AR(1) model, the aver-
age accuracy of CCIC was higher than that of BIC and much higher than that of AIC. When n changed from 50 
to 200, the accuracy of CCIC was above 90%. For the AR(2) model, CCIC had the highest accuracy (80.06%) 
among the three criteria, especially for long data lengths. When CCIC was applied to the AR(3) model, its 
average accuracy was 63.56%, still keeping higher accuracy than that of AIC and BIC for different data lengths. 
Hence, it was found that CCIC had high efficiency for the determination of suitable AR(p) model order, espe-
cially for AR(1) and AR(2) models.

In order to further verify the applicability of the proposed CCIC, we also did Monte-Carlo experiments for the 
MA and ARMA models. Details can be found in Appendixes A and B, respectively. The results in Tables A1 
and B1 also indicated that the CCIC had higher efficiency for the determination of suitable model order compared 
to AIC and BIC, no matter which data lengths are considered, being consistent with the results for AR models. It 
is just due to the same regression-based essence of these models. Overall, all the results verified higher and more 
stable accuracy of determining the true model order by CCIC than by AIC and BIC, and thus the proposed CCIC 
can be applicable for the AR, MA, and ARMA models.

3.3.  Influence of Main Factors on the Verification Test

Different parameters are involved in the calculation of CCIC, which may impact the accuracy of quantification 
of dependence characteristics. To investigate how the four main factors (mean value 𝐴𝐴 𝐴𝐴 , variation coefficient 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 , 
skewness coefficient 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 , and initial value 𝐴𝐴 𝐴𝐴1 ) influenced the calculation of the correlation coefficient r and the 
accuracy of CCIC, we designed a set of Monte-Carlo (MC) experiments, by taking AR(1) model as an example 
again. For example, the values of 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 and 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 were preset and fixed, and then 𝐴𝐴 𝐴𝐴1 varied to investigate their 
influence on r. We repeated 1,000 MC experiments for each case of the four factors, and take the mean value as 
the final value of r and the accuracy of CCIC.

𝐴𝐴 𝐴𝐴1  𝐴𝐴 𝐴𝐴2 𝐴𝐴 𝐴𝐴3  𝐴𝐴 𝐴𝐴𝑎𝑎  𝐴𝐴 𝐴𝐴𝑏𝑏  𝐴𝐴 𝐴𝐴  𝐴𝐴 𝐴𝐴1 𝐴𝐴 𝐴𝐴2 𝐴𝐴 𝐴𝐴3  𝐴𝐴 𝐴𝐴𝑎𝑎  𝐴𝐴 𝐴𝐴𝑏𝑏  𝐴𝐴 𝐴𝐴 

0.1 0.7 −0.2 0.729 0.726 0.36% −0.4 0.7 0.6 0.833 0.823 1.25%

0.6 −0.5 0.7 0.769 0.764 0.67% 0.3 −0.7 0.6 0.886 0.882 0.41%

−0.9 −0.1 0.4 0.848 0.847 0.09% 0.7 −0.9 0.4 0.799 0.797 0.27%

0.3 −0.6 −0.3 0.805 0.802 0.37% 0.1 0.1 0.4 0.465 0.461 0.89%

0.2 0.1 −0.1 0.244 0.241 0.97% −0.1 −0.6 −0.1 0.602 0.603 0.14%

0.6 −0.6 0.2 0.600 0.599 0.15% 0.5 0.5 −0.4 0.702 0.700 0.35%

−0.2 0.3 −0.4 0.809 0.802 0.97% −0.3 0.5 0.1 0.641 0.639 0.32%

0.3 0.5 −0.7 0.820 0.817 0.44% 0.3 −0.8 −0.3 0.982 0.978 0.36%

−0.2 −0.5 −0.6 0.768 0.765 0.39% −0.3 −0.7 0.1 0.754 0.753 0.24%

Table 3 
𝐴𝐴 𝐴𝐴𝑎𝑎, 𝐴𝐴 𝐴𝐴𝑏𝑏, and Their Relative Error 𝐴𝐴 𝐴𝐴 Under Different Parameters in AR(3) Model

Data length

AR(1) AR(2) AR(3)

AIC BIC CCIC AIC BIC CCIC AIC BIC CCIC

n = 50 30.18% 81.99% 90.36% 22.34% 61.58% 74.49% 19.03% 46.80% 54.03%

n = 75 31.18% 88.82% 93.22% 24.51% 69.37% 77.33% 21.03% 57.77% 59.50%

n = 100 34.04% 90.81% 94.16% 28.60% 74.79% 80.44% 23.57% 61.47% 63.47%

n = 150 35.65% 93.22% 95.29% 32.17% 78.54% 83.23% 28.00% 67.87% 69.13%

n = 200 40.31% 94.67% 96.75% 37.05% 80.46% 84.79% 30.63% 70.50% 71.67%

Mean value 34.27% 89.90% 93.96% 28.93% 72.95% 80.06% 24.45% 60.88% 63.56%

Table 4 
Accuracy of the Determination of AR Model Orders Under Different Data Lengths by AIC, BIC, and the Proposed CCIC
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Results in Figure 2 (left) show that the initial value of 𝐴𝐴 𝐴𝐴1 and the statistical parameters (𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 and 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 ) of pure 
random components had little impact on r. However, with the increase of u, r showed first a significant downward 
trend and then remained stable after u was close to 𝐴𝐴 𝐴𝐴1 . Figure 2 (right) illustrates that the influence of the other 
three parameters except u was weak on the accuracy of CCIC; when the value of u increased, the accuracy of 
CCIC showed a downward trend but within a 7% variation range.

We further analyzed the factors that influenced the quantification of dependent components. Combining Equa-
tion 6 and Equation 7, we can get:

𝑟𝑟
2
=

1

1 +
𝜎𝜎2𝑢𝑢

𝜎𝜎2𝜂𝜂

� (31)

where 𝐴𝐴 𝐴𝐴2

𝑢𝑢 represents the variance of the pure random component and 𝐴𝐴 𝐴𝐴2

𝜂𝜂 represents the variance of the dependent 
components. Since the signal-to-noise ratio (SNR) represents the power spectrum ratio of signal to noise, the 

formula for estimating the SNR of a time series with dependent components 
can be written as (Herrick, 2014; Xie, Zhao, et al., 2018):

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝜎𝜎2

𝜂𝜂

𝜎𝜎2

𝑢𝑢

� (32)

Thus, according to Equation 31 and Equation 32, the relationship between r 
and SNR can be expressed as:

𝑟𝑟
2
=

1

1 +
1

𝑆𝑆𝑆𝑆𝑆𝑆

� (33)

Equation 33 shows that SNR of a time series has a positive correlation with 
the absolute value of the correlation coefficient. Moreover, as 𝐴𝐴 𝐴𝐴2

u = u2𝐶𝐶𝑢𝑢𝑢𝑢
2 , 

it can be deduced that u has a negative correlation with r, which is consistent 
with the results shown in Figure 2(left). To visually show the relationship 
between SNR and r, as well as the relationship between the accuracy of CCIC 
and SNR, we randomly generated 1,000 sets of first-order autoregressive 
time series to obtain the results, as shown in Figure 3, which verified the 
reasonability of Equation 33 (blue curve). Moreover, it shows that there were 
little changes in the accuracy of CCIC along with the increase of SNR (green 
curve), indicating the little effect of SNR on the determination of model order 
by CCIC.

Figure 2.  Changes of correlation coefficient (left) and accuracy of correlation coefficient-based information criterion (right) 
with the four parameters of mean value 𝐴𝐴 𝐴𝐴 , variation coefficient 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 , skewness coefficient 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 , and initial value 𝐴𝐴 𝐴𝐴1 .

Figure 3.  Scatter diagram showing the relationship between SNR and the 
absolute value of r, and the relationship between the accuracy of correlation 
coefficient-based information criterion and signal-to-noise ratio. Here 1,000 
sets of first-order autoregressive time series were used. The red dotted lines 
indicate the thresholds of the correlation coefficient at 5% and 1% significance 
levels.

 19447973, 2022, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031606 by South U

niversity O
f Science, W

iley O
nline L

ibrary on [07/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

XIE ET AL.

10.1029/2021WR031606

12 of 22

Considering the same regression-based essence of these models and their consistent results in Table 4, Table A1, 
and Table B1, the influences of these factors on the MA and ARMA models are not repeated here. To sum up, 
the main factor impacting the identification of dependent components is the magnitude of the mean value of the 
time series to be analyzed. If the mean value of the time series is close to its initial value, the calculation of r 
and  the accuracy of CCIC is weakly affected by the four main factors mentioned (𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 , 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 , 𝐴𝐴 𝐴𝐴1 ). Besides, a higher 
SNR value suggests a larger proportion of dependent components, which is easier to be identified. However, the 
signal-to-noise ratio will cause little difference in the determination of model order by CCIC.

4.  Detection of Short-Term Dependence Characteristics in Annual Precipitation in 
China
To further verify the efficacy of the proposed CCIC, the annual precipitation data observed at 520 meteorolog-
ical stations over China from 1961 to 2013 were collected for investigating the short-term dependence charac-
teristics of annual precipitation. The data were obtained from the China Meteorological Data Sharing Service 
System (http://cdc.cma.gov.cn/). Considering the tailed characteristics of autocorrelation coefficient graphs of 
the precipitation time series (with examples shown in following Figure 7), we used the AR model for describing 
the dependent components in them and applied the proposed CCIC to determine the optimal model order for 
each  time series. According to the method developed in Section 2.2, the deterministic components of the precip-
itation time series were first checked and removed, and the residual precipitation time series was obtained. After 
that, the maximum AR model order was set as 𝐴𝐴 𝐴𝐴∕3 + 1 (n = 53 here). By estimating the values of the AR model's 
parameters, the correlation coefficients between the residual precipitation time series and its dependent compo-
nents were calculated, and the CCIC values under different model orders were also calculated. We finally selected 
the model order corresponding to the minimum CCIC value as the optimal model order.

Figure 4 visually shows the spatial difference in the degree of dependence of annual precipitation at the 520 
stations. According to the results, annual precipitation at only 38 stations (7.3% of the total 520 stations) contained 

Figure 4.  Significance of dependence characteristics for the annual precipitation time series at 520 stations in China. I, the 
Songhua River Basin; II, the Liaohe River Basin; III, the Haihe River Basin; IV, the Yellow River Basin; V, the Huaihe River 
Basin; VI, the Yangtze River Basin; VII, the Southeast River Basin; VIII, the Pearl River Basin; IX, the Southwest River 
Basin; and X, the Northwest River Basin.
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the dependence components at the 5% significance level. These annual precipitation time series with significant 
short-term dependence characteristics were mainly located in the Songhua River basin, Northwest China, the 
Yellow River basin, and especially the whole mid and lower reaches of the Yangtze River basin. It may be due to 
the combined influence of geographic and topological conditions, and the complex Asian monsoon effects (Jiang 
et al., 2017; Markonis & Koutsoyiannis, 2016; Sang, Singh, et al., 2018), while more detailed physical causes 
should be further explored.

Figure 5 shows the determination of AR model orders for the 38 annual precipitation time series that contain 
dependent components. It indicates that the results of CCIC were consistent with those by BIC in most cases, 
but AIC gave much higher model orders. By using the AR model orders determined by CCIC, the residual errors 
of these precipitation time series were obtained, and their correlation coefficients were not significant at the 5% 
significant level and thus showed independent characteristics, implying the reasonability for the description of 
dependent components by the AR models determined. Moreover, Figure 6 shows the correlation coefficients of 
dependent components determined by the three criteria (AIC, BIC, and CCIC) and the thresholds at two signif-
icance levels, where r5% was the threshold at the significance level of 5% and r1% was the threshold at the signif-
icance level of 1%. It clearly indicated that the dependent components determined by AIC were not significant 
at many stations and that BIC was also not significant in several stations. However, the dependent components 
determined by CCIC were significant at all 38 stations, which further proved the rationality of the proposed 
CCIC.

In order to verify the reasonability of the CCIC results, we randomly selected four stations from the 38 stations 
as examples for further explanations, which were Jishou (JS), Youyu (YY), Mudanjiang (MD), and Qingshui 
River (QS) stations, with the station number of 30, 14, 17, and 18, respectively (as shown in Figure 4). The 
autocorrelation coefficient graphs and partial correlation coefficient graphs of the residual precipitation time 

Figure 5.  Selection of auto-regressive model orders by the three criteria (Akaike Information Criterion, Bayesian 
Information Criterion, and correlation coefficient-based information criterion ) for the annual precipitation time series that 
contains dependent components at 38 stations in China.
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series were plotted, as shown in Figure 7. The red line in the figure is the upper and lower thresholds at a 
5% significance level. If the autocorrelation coefficient was within the permissible limits, the time series was 
considered to be independent, otherwise, the time series had dependent components. Figure 7 indicates that 
except for the YY Station, there were dependent components in the other three annual precipitation time series. 
It can be considered that the annual precipitation time series at JS, YY, MD, and QS stations were truncated with 
lag-1, lag-1, lag-2, and lag-3 partial correlation coefficients, respectively. This was consistent with the results 
of CCIC. However, AIC results were 2, 18, 10, 3, and BIC ranking results were 1, 5, 2, and 1, respectively. 
Thereby, it was deducted that CCIC performed better than the other two criteria for determining the suitable 
model orders.

The following principle was used to further verify the rationality of the model order determined by the three 
criteria. Specifically, the suitable model order should make sure that the time series had dependence character-
istics but its residual error was independent. The changes of correlation coefficient r of each precipitation time 
series along with model order increase are plotted in Figure 8, where the upper and lower red lines represented 
the thresholds of r at 1% and 5% significance levels, respectively. If the correlation coefficients reached beyond 
the dotted red line, it was thought that the time series for this model order had dependence characteristics, and 
vice versa. As shown in Figure 8 (a), the annual precipitation time series at JS station in the first eight order 
had dependence characteristics. When the model order was one, the order was minimum and the model was 
the simplest, with its residual error indicating independent characteristics, so it satisfied the principle explained 
above. In Figure 8 (b), the annual precipitation time series at the YY station had dependence characteristics only 

Figure 6.  Correlation coefficients (r) of the dependent components in the annual precipitation time series at 38 stations determined by different criteria (Akaike 
Information Criterion, Bayesian Information Criterion, and correlation coefficient-based information criterion).
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in the first order, and its residual error was independent, which met the principle. Similarly, as shown in Figure 8 
(c) and (d), when the precipitation time series at MD and QS stations had orders 2 and 3, respectively, the mini-
mum orders that satisfied the principle were obtained. It proved the rationality of the model order determination 
by CCIC, differing from the results of AIC and BIC.

Figure 7.  Autocorrelation coefficient (denoted as ACC) graphs and partial correlation coefficient graphs (denoted as PCC) 
of the selected four precipitation time series. (a), (c), (e) and (g) are ACC graphs of JS, YY, MD, and QS station, respectively. 
(b), (d), (f) and (h) are PCC graphs of JS, YY, MD, and QS station, respectively.

Figure 8.  Changes of correlation coefficient © of the four precipitation time series with the increase of model order. (a) JS station, (b) YY station, (c) MD station, and 
(d) QS station.
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5.  Conclusion
In this study, a method called CCIC was proposed by combining the correlation coefficient r and information 
theory to determine a suitable model order for describing the dependent components in hydrological time series 
using regression-based models. Results verified the superiority of CCIC compared to AIC and BIC which had 
been used widely. According to the results of different Monte-Carlo experiments, the rationality of correlation 
coefficient r, as the key index in CCIC, for quantifying the significance of dependence had been verified. Moreo-
ver, results showed that the estimation of the correlation coefficient was mainly influenced by both the magnitude 
of mean value and the signal-to-noise ratio, and bigger correlation coefficient r responses to a higher signal-to-
noise ratio of time series, implying more significance of dependent components. However, only the magnitude of 
the mean value had big impact on the accuracy of the CCIC estimation. If the mean value of the time series was 
close to its initial value, the estimation of CCIC (and also r) was weakly influenced by the four main factors of 
the mean value (𝐴𝐴 𝐴𝐴 ), variation coefficient (𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 ), skewness coefficient (𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 ), and initial value (𝐴𝐴 𝐴𝐴1 ), which led to high 
accuracy of the determination of suitable model order, especially for long data length.

By applying the proposed CCIC to analyze the annual precipitation at 520 meteorological stations in China, 
its advantage compared to AIC and BIC was further verified. High efficiency for the determination of model 
order can be obtained by CCIC rather than AIC and BIC. Moreover, CCIC can also more effectively iden-
tify the dependent components in hydrological time series by following the principle that “the suitable model 
order should make sure that the time series has dependence characteristics but its residual error is independent.” 
However, the dependent components determined by AIC and BIC cannot be guaranteed to be significant in all 
situations, violating the above principle. Besides, it was found that the significant short-term dependence charac-
teristics in annual precipitation time series mainly occurred in local regions especially in the Yangtze River basin, 
while the physical causes should be further explored.

Overall, the advantages of the proposed CCIC for the determination of suitable model order rather than AIC and 
BIC were confirmed in this study. It should be pointed out that based on the main idea of the proposed CCIC, it 
could have a wide application range, just like the wide applications of AIC and BIC. The application of the CCIC 
approach in other hydrologic cases (runoff, flood peak, etc.) and other research areas, as well as different scales, 
is worth further exploring, to further confirm its reliability and superiority.

Appendix A:  Results of Monte-Carlo Experiments for MA Models
Using a moving average model MA(q), the residual time series xt can be described as:

𝑥𝑥𝑡𝑡 = 𝑢𝑢 + 𝜀𝜀𝑡𝑡 − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯ − 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞� (A1)

where u is the mean of xt; θ1, θ2, …, θq are the moving average coefficients; q is the order of the MA model; εt has 
the same meaning as that in Equation 1.

If the dependent component 𝐴𝐴 − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯ − 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞 is denoted as 𝐴𝐴 𝐴𝐴𝑡𝑡 , and the random component 𝐴𝐴 𝐴𝐴 + 𝜀𝜀𝑡𝑡 is 
denoted as 𝐴𝐴 𝐴𝐴𝑡𝑡 , then xt can be expressed as:

𝑥𝑥𝑡𝑡 = 𝜂𝜂𝑡𝑡 + 𝑢𝑢𝑡𝑡� (A2)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝑡𝑡 are independent, and 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑡𝑡) = 𝑢𝑢 , 𝐴𝐴 𝐴𝐴 (𝑢𝑢𝑡𝑡) = 𝑢𝑢 , and 𝐴𝐴 𝐴𝐴 (𝜂𝜂𝑡𝑡) = 0 .

Then, the same derivations as that in Equations 2–8 can also be obtained accordingly to get the following equation:

𝑟𝑟
2 = 1 −

𝜎𝜎𝑢𝑢
2

𝜎𝜎𝑥𝑥
2

� (A3)

In order to establish the relationship between the correlation coefficient r and the MA model's parameters, the 
following is derived.

Squaring both sides of Equation A1, and taking their expectation (E), one gets:

𝐸𝐸 (𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡) = 𝐸𝐸
[

(𝑢𝑢𝑡𝑡 − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯ − 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞) (𝑢𝑢𝑡𝑡 − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯ − 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞)
]

� (A4)
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Considering that

𝐸𝐸 (𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡) = 𝐷𝐷(𝑥𝑥) + 𝑢𝑢
2� (A5)

and

�
[

(�� − �1��−1 − �2��−2 −⋯ − ����−�)2
]

=� (�� − �1��−1 − �2��−2 −⋯ − ����−�)

+
[

� (�� − �1��−1 − �2��−2 −⋯ − ����−�)
]2� (A6)

Equation A4 can be re-written as:

𝜎𝜎
2

𝑥𝑥 + 𝑢𝑢
2
=
(

1 + 𝜃𝜃
2

1
+ 𝜃𝜃

2

2
+⋯ + 𝜃𝜃

2

𝑞𝑞

)

𝜎𝜎
2

𝜀𝜀 + 𝑢𝑢
2� (A7)

After simplification, we can get:

𝜎𝜎
2

𝑥𝑥 =
(

1 + 𝜃𝜃
2

1
+ 𝜃𝜃

2

2
+⋯ + 𝜃𝜃

2

𝑞𝑞

)

𝜎𝜎
2

𝜀𝜀� (A8)

As 𝐴𝐴 𝐴𝐴2

𝜀𝜀 = 𝜎𝜎𝑢𝑢
2 , we combine Equation A3 and Equation A8 to obtain:

𝑟𝑟
2 = 1 −

1
(

1 + 𝜃𝜃2
1
+ 𝜃𝜃2

2
+⋯ + 𝜃𝜃2𝑞𝑞

)� (A9)

The above equation clearly indicates the relationship between the correlation coefficient r and the parameters of 
the MA model.

We design the Monte-Carlo experiments by taking the first-order, second-order, and third-order MA models as 
examples to compare the accuracy of CCIC with that of AIC and BIC. The synthetic time series has initial value 

𝐴𝐴 𝐴𝐴1 = 100 , mean value 𝐴𝐴 𝐴𝐴 = 100 , variation coefficient 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 = 0.2 , and skewness coefficient 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢 = 0.4 , and the data 
length n is set as 50, 75, 100, 150, and 200, respectively. For the other parameter values and the experiment steps, 
they are just the same as that for the AR models.

For the first-order MA model (i.e., MA(1) model), its expression can be written as 𝐴𝐴 𝐴𝐴𝑡𝑡 = −𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 . Substituting 

the first-order autocorrelation coefficient formula 𝐴𝐴 𝐴𝐴1 =
−𝜃𝜃1

1+𝜃𝜃2
1

 into Equation A9, then 𝐴𝐴 𝐴𝐴2 can be shown as:

𝑟𝑟
2
= 1 +

𝜌𝜌1

𝜃𝜃1
� (A10)

The MA(2) model is expressed as: 𝐴𝐴 𝐴𝐴𝑡𝑡 = −𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + 𝑢𝑢𝑡𝑡 . Substituting the second-order autocorrelation coef-

ficient formula 𝐴𝐴 𝐴𝐴2 =
−𝜃𝜃2

1+ 𝜃𝜃2
1
+ 𝜃𝜃2

2

 into Equation A9, 𝐴𝐴 𝐴𝐴2 can be shown as:

𝑟𝑟
2 = 1 −

1

1 + 𝜃𝜃2
1
+ 𝜃𝜃2

2

= 1 +
𝜌𝜌2

𝜃𝜃2
� (A11)

Similarly, for the MA(3) model, we can also obtain the following equation:

Data length

MA(1) MA(2) MA(3)

AIC BIC CCIC AIC BIC CCIC AIC BIC CCIC

n = 50 57.33% 70.67% 94.67% 44.40% 53.93% 61.53% 35.20% 39.00% 44.33%

n = 75 54.27% 73.93% 95.13% 44.07% 55.93% 65.67% 34.13% 43.27% 51.07%

n = 100 52.53% 75.80% 96.33% 46.00% 60.47% 67.60% 32.27% 42.80% 53.60%

n = 150 51.67% 77.20% 97.13% 43.07% 61.20% 72.33% 32.67% 45.00% 54.73%

n = 200 50.27% 78.60% 97.33% 45.47% 63.47% 74.53% 30.60% 43.87% 58.53%

Mean value 53.21% 75.24% 96.12% 44.60% 59.00% 68.33% 32.97% 42.79% 52.45%

Table A1 
Accuracy of the Determination of MA Model Orders Under Different Data Lengths by AIC, BIC, and the Proposed CCIC
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𝑟𝑟
2 = 1 −

1

1 + 𝜃𝜃2
1
+ 𝜃𝜃2

2
+ 𝜃𝜃2

3

= 1 +
𝜌𝜌3

𝜃𝜃3
� (A12)

Table A1 shows the accuracy of correctly identifying the true order of MA models. For the MA(1) model, the 
average accuracy of CCIC was higher than that of BIC and much higher than that of AIC. When n changed from 
50 to 200, the accuracy of CCIC was above 90%. For the MA(2) model, CCIC had the highest accuracy (68.33%) 
among the three criteria, especially for long data lengths. When CCIC was applied to the MA(3) model, its 
average accuracy was 52.45%, still keeping higher accuracy than that of AIC and BIC for different data lengths. 
Hence, it was found that CCIC had high efficiency for the determination of a suitable MA(q) order.

Appendix B:  Results of Monte-Carlo Experiments for ARMA Models
Using an autoregressive moving average model ARMA(p,q), the residual time series xt can be described as:

𝑥𝑥𝑡𝑡 = 𝑢𝑢 + 𝜑𝜑1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) + 𝜑𝜑2 (𝑥𝑥𝑡𝑡−2 − 𝑢𝑢) +⋯ + 𝜑𝜑𝑝𝑝 (𝑥𝑥𝑡𝑡−𝑝𝑝 − 𝑢𝑢) + 𝜀𝜀𝑡𝑡 − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯ − 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞� (B1)

where u is the mean of xt; φ1, φ2, …, φp are the autoregressive coefficients; p is the autoregressive order; θ1, θ2, 
…, θq are the moving average coefficients; q is the moving average order; εt has the same meaning as that in 
Equation 1.

By denoting the dependent component 𝐴𝐴 𝐴𝐴1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) + 𝜑𝜑2 (𝑥𝑥𝑡𝑡−2 − 𝑢𝑢) +⋯ + 𝜑𝜑𝑝𝑝 (𝑥𝑥𝑡𝑡−𝑝𝑝 − 𝑢𝑢) − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯ −

𝑡𝑡−2 − 𝑢𝑢) +⋯ + 𝜑𝜑𝑝𝑝 (𝑥𝑥𝑡𝑡−𝑝𝑝 − 𝑢𝑢) − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯ − 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞 as 𝐴𝐴 𝐴𝐴𝑡𝑡 , and denoting the random component 𝐴𝐴 𝐴𝐴 + 𝜀𝜀𝑡𝑡 as 𝐴𝐴 𝐴𝐴𝑡𝑡 , xt can be expressed as their sum:

𝑥𝑥𝑡𝑡 = 𝜂𝜂𝑡𝑡 + 𝑢𝑢𝑡𝑡� (B2)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝑡𝑡 are independent, and 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑡𝑡) = 𝑢𝑢 , 𝐴𝐴 𝐴𝐴 (𝑢𝑢𝑡𝑡) = 𝑢𝑢 , and 𝐴𝐴 𝐴𝐴 (𝜂𝜂𝑡𝑡) = 0 .

Then, the same derivations as that in Equations 2–8 can also be obtained accordingly to get the following equation:

𝑟𝑟
2 = 1 −

𝜎𝜎𝑢𝑢
2

𝜎𝜎𝑥𝑥
2

� (B3)

In order to establish the relationship between the correlation coefficient r and the ARMA model's parameters, the 
following is further derived.

Transposing Equation B1, we can get:

𝑥𝑥𝑡𝑡 − 𝑢𝑢 = 𝜑𝜑1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) + 𝜑𝜑2 (𝑥𝑥𝑡𝑡−2 − 𝑢𝑢) +⋯ + 𝜑𝜑𝑝𝑝 (𝑥𝑥𝑡𝑡−𝑝𝑝 − 𝑢𝑢) + 𝜀𝜀𝑡𝑡 − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯ − 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞� (B4)

Multiplying both sides of Equation B4 by 𝐴𝐴 𝐴𝐴𝑡𝑡 − 𝑢𝑢 , and taking their expectation (E), one gets:

�(�� − �)2 =�1� [(��−1 − �) (�� − �)] + �2� [(��−2 − �) (�� − �)]

+⋯ + ���
[

(��−� − �) (�� − �)
]

+ � [(�� − �) ��] − �1� [(�� − �) ��−1]

− �2� [(�� − �) ��−2] −⋯ − ���
[

(�� − �) ��−�
]

� (B5)

Dividing both sides of Equation B5 by 𝐴𝐴 𝐴𝐴2

𝑥𝑥 , and considering that

𝐸𝐸 [(𝑥𝑥𝑡𝑡−𝑖𝑖 − 𝑢𝑢) (𝑥𝑥𝑡𝑡 − 𝑢𝑢)]

𝜎𝜎2
𝑥𝑥

= 𝜌𝜌𝑖𝑖, 𝜌𝜌0 = 1� (B6)

we can get:

1 − 𝜌𝜌1𝜑𝜑1 − 𝜌𝜌2𝜑𝜑2 −⋯ − 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃 =
𝐸𝐸 [(𝑥𝑥𝑡𝑡 − 𝑢𝑢) 𝜀𝜀𝑡𝑡] − 𝜃𝜃1𝐸𝐸 [(𝑥𝑥𝑡𝑡 − 𝑢𝑢) 𝜀𝜀𝑡𝑡−1] −⋯ − 𝜃𝜃𝑞𝑞𝐸𝐸

[

(𝑥𝑥𝑡𝑡 − 𝑢𝑢) 𝜀𝜀𝑡𝑡−𝑞𝑞
]

𝜎𝜎2
𝑥𝑥

� (B7)

Multiplying both sides of Equation B7 by 𝐴𝐴 𝐴𝐴2

𝑥𝑥 , one gets:

(1 − 𝜌𝜌1𝜑𝜑1 − 𝜌𝜌2𝜑𝜑2 −⋯ − 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃 ) 𝜎𝜎
2
𝑥𝑥 = 𝐸𝐸 [(𝑥𝑥𝑡𝑡 − 𝑢𝑢) 𝜀𝜀𝑡𝑡] − 𝜃𝜃1𝐸𝐸 [(𝑥𝑥𝑡𝑡 − 𝑢𝑢) 𝜀𝜀𝑡𝑡−1] −⋯ − 𝜃𝜃𝑞𝑞𝐸𝐸

[

(𝑥𝑥𝑡𝑡 − 𝑢𝑢) 𝜀𝜀𝑡𝑡−𝑞𝑞
]

� (B8)
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Multiplying both sides of Equation B4 by 𝐴𝐴 𝐴𝐴𝑡𝑡 , and taking their expectation (E), one gets:

� [(�� − �) ��] =�1� [(��−1 − �) ��] + �2� [(��−2 − �) ��] +⋯ + ���
[

(��−� − �) ��
]

+ �
(

�2�
)

− �1� (����−1) − �2� (����−2) −⋯ − ��� (����−�) = �
(

�2�
)

= �2
�

� (B9)

Multiplying both sides of Equation B4 by 𝐴𝐴 𝐴𝐴𝑡𝑡−1 , and taking their expectation (E), one gets:

� [(�� − �) ��−1] =�1� [(��−1 − �) ��−1] + �2� [(��−2 − �) ��−1] +⋯ + ���
[

(��−� − �) ��−1
]

+ � (����−1) − �1�
(

�2�−1
)

− �2� (��−1��−2)�

−⋯ − 𝜃𝜃𝑞𝑞𝐸𝐸 (𝜀𝜀𝑡𝑡−1𝜀𝜀𝑡𝑡−𝑞𝑞) = −𝜃𝜃1𝐸𝐸
(

𝜀𝜀
2

𝑡𝑡−1

)

= −𝜃𝜃1𝜎𝜎
2
𝜀𝜀� (B10)

Similarly, and so on, until multiplying both sides of Equation B4 by 𝐴𝐴 𝐴𝐴𝑡𝑡−𝑞𝑞 , and taking their expectation (E), one 
gets:

�
[

(�� − �) ��−�
]

=�1�
[

(��−1 − �) ��−�
]

+ �2�
[

(��−2 − �) ��−�
]

+⋯ + ���
[

(��−� − �) ��−�
]

+ � (����−�) − �1� (��−1��−�)�

−𝜃𝜃2𝐸𝐸 (𝜀𝜀𝑡𝑡−2𝜀𝜀𝑡𝑡−𝑞𝑞) −⋯ − 𝜃𝜃𝑞𝑞𝐸𝐸
(

𝜀𝜀
2
𝑡𝑡−𝑞𝑞

)

= −𝜃𝜃𝑞𝑞𝐸𝐸
(

𝜀𝜀
2
𝑡𝑡−𝑞𝑞

)

= −𝜃𝜃𝑞𝑞𝜎𝜎
2
𝜀𝜀� (B11)

Therefore, Equation B8 can be simplified as:

(1 − 𝜌𝜌1𝜑𝜑1 − 𝜌𝜌2𝜑𝜑2 −⋯ − 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃 ) 𝜎𝜎
2
𝑥𝑥 =

(

1 + 𝜃𝜃
2

1
+ 𝜃𝜃

2

2
+⋯ + 𝜃𝜃

2
𝑞𝑞

)

𝜎𝜎
2
𝜀𝜀� (B12)

Equation B12 can be re-written as:

𝜎𝜎2
𝜀𝜀

𝜎𝜎2
𝑥𝑥

=
1 − 𝜌𝜌1𝜑𝜑1 − 𝜌𝜌2𝜑𝜑2 −⋯ − 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃

1 + 𝜃𝜃2
1
+ 𝜃𝜃2

2
+⋯ + 𝜃𝜃2𝑞𝑞

� (B13)

As 𝐴𝐴 𝐴𝐴2

𝜀𝜀 = 𝜎𝜎𝑢𝑢
2 , combining Equation B3 and Equation B13, we obtain:

𝑟𝑟
2 = 1 −

1 − 𝜌𝜌1𝜑𝜑1 − 𝜌𝜌2𝜑𝜑2 −⋯ − 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃

1 + 𝜃𝜃2
1
+ 𝜃𝜃2

2
+⋯ + 𝜃𝜃2𝑞𝑞

� (B14)

When p = 0, Equation B14 presents a MA model, and it can be written as:

𝑟𝑟
2 = 1 −

1
(

1 + 𝜃𝜃2
1
+ 𝜃𝜃2

2
+⋯ + 𝜃𝜃2𝑞𝑞

)� (B15)

When q = 0, Equation B14 presents an AR model, and it can be written as:

𝑟𝑟
2
= 𝜌𝜌1𝜑𝜑1 + 𝜌𝜌2𝜑𝜑2 +⋯ + 𝜌𝜌𝑃𝑃𝜑𝜑𝑃𝑃� (B16)

Equation B15 and Equation B16 are the same as Equation A9 in Appendix A and Equation 14, respectively. 
Therefore, it is thought that the above derivations of Equation B14 are reasonable, and clearly indicate the rela-
tionship between the correlation coefficient r and the parameters for the ARMA model.

We design the Monte-Carlo experiments by taking the ARMA(1,1), ARMA(1,2), and ARMA(2,1) models as 
examples to compare the accuracy of CCIC with that of AIC and BIC. The relevant parameter values and the 
experiment steps are just the same as that for the AR and MA models.

For the ARMA(1,1) model, its expression can be written as 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝜑𝜑1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 . Based on the 
Yule-Walker equations, we obtain 𝐴𝐴 𝐴𝐴1 = 𝜑𝜑1 and insert into Equation B14, then 𝐴𝐴 𝐴𝐴2 can be shown as:

𝑟𝑟
2 = 1 −

1 − 𝜑𝜑2

1

1 + 𝜃𝜃1
2

� (B17)

The ARMA(1,2) model is expressed as: 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝜑𝜑1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 + 𝑢𝑢𝑡𝑡 . Based on the Yule-Walker 
equations, we obtain 𝐴𝐴 𝐴𝐴1 = 𝜑𝜑1 and insert into Equation B14, then 𝐴𝐴 𝐴𝐴2 can be shown as:
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𝑟𝑟
2 = 1 −

1 − 𝜑𝜑2

1

1 + 𝜃𝜃1
2 + 𝜃𝜃2

2
� (B18)

The ARMA(2,1) model is expressed as: 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝜑𝜑1 (𝑥𝑥𝑡𝑡−1 − 𝑢𝑢) + 𝜑𝜑2 (𝑥𝑥𝑡𝑡−2 − 𝑢𝑢) − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 , with 𝐴𝐴 𝐴𝐴1 =
𝜑𝜑1

1−𝜑𝜑2

 and 

𝐴𝐴 𝐴𝐴2 =
𝜑𝜑2
1

1−𝜑𝜑2

+ 𝜑𝜑2 from the Yule-Walker equations, we can obtain:

𝑟𝑟
2 = 1 −

1 −

[

𝜑𝜑2
1(1+𝜑𝜑2)
1−𝜑𝜑2

+ 𝜑𝜑2

2

]

1 + 𝜃𝜃1
2

=

𝜃𝜃1
2 +

𝜑𝜑2
1(1+𝜑𝜑2)
1−𝜑𝜑2

+ 𝜑𝜑2

2

1 + 𝜃𝜃1
2

� (B19)

Table B1 shows the accuracy of correctly identifying the true order of ARMA models. Similarly, it was found 
that CCIC had higher efficiency for the determination of suitable ARMA(p,q) model order compared to AIC and 
BIC, no matter which data lengths are considered.

Data Availability Statement
The data were obtained from the China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/).
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Data length

ARMA(1,1) ARMA(1,2) ARMA(2,1)

AIC BIC CCIC AIC BIC CCIC AIC BIC CCIC

n = 50 16.87% 62.33% 83.80% 11.40% 39.67% 52.47% 12.80% 44.00% 62.87%
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Table B1 
Accuracy of the Determination of ARMA Model Orders Under Different Data Lengths by AIC, BIC, and the Proposed 
CCIC
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