
1. Introduction
Climate change is altering both the spatial and temporal variations of precipitation (Dore,  2005; Fischer & 
Knutti, 2015). Precipitation changes associated with air temperature anomalies due to surface energy partition 
are of great concern (Hirschi et al., 2011; Mueller & Seneviratne, 2012; Seneviratne et al., 2006, 2010). For 
example, recent studies highlighted the critical role of surface soil moisture (SM) anomalies caused by precip-
itation deficits in amplifying the European metro-heatwaves (Fischer et al., 2007; Hirschi et al., 2011; Miralles 
et al., 2014; Liu et al., 2020; Teuling et al., 2010). Compared with the meteorological droughts or heatwaves events 
alone, compound dry-hot extremes, namely prolonged periods of precipitation shortage combined with extreme 
heatwaves, could cause more devastating natural disasters and socio-economic impacts (Alizadeh et al., 2020; 
Zscheischler & Seneviratne, 2017; Zscheischler et al., 2018).

Precipitation and temperature are both the key drivers of meteorological drought or heatwave. They interrelate 
with each other through a complex loop of feedback processes, which influences the coupled energy and water 
budgets. On one hand, the saturated water vapor pressure, namely the water-holding capacity of the atmosphere, 
increases by about 7% for every 1°C rise in temperature according to Clausius-Clapeyron relation (Barbero 
et al., 2017; Trenberth et al., 2003). As temperature and the water-holding capacity of the atmosphere increase, 
the duration between precipitation events can become longer because it will take more time to recharge the atmos-
phere with moisture (Yi et al., 2015). Previous research has established that the increasing atmospheric dryness 
associated with rising temperature could decrease the likelihood of precipitation, which could further favor the 
occurrence of meteorological droughts (Miralles et al., 2019; Santanello et al., 2013; Seneviratne et al., 2010). 

Abstract A lengthening of dry spells (DSLs) has been reported by some regional studies, but its linkage 
with heatwaves via the feedback between soil moisture and air temperature is still not clear on the global and 
continental scales. Here we examine increases in the length of DSLs during summer over the global continents 
using in situ precipitation records. Globally, the average DSL has increased by 0.46 day/decade since the 1970s 
along with increased high-pressure anomalies which are found to be an important reason for the intensification 
of heatwaves as suggested by the robust and widespread relationships between the DSL and heatwave duration 
and severity in the northern extratropics. The average DSL associated with a heatwave declined over lands, 
implying a strengthening coupling between precipitation anomalies and heatwaves. The findings of this study 
suggest that the precipitation variations associated with changes in DSLs should be considered in attributions of 
temperature extremes.

Plain Language Summary Despite the little change of global mean precipitation over continents 
during the past decades, it can exert a great impact on land surface energy exchange through changes in 
precipitation timing, frequency, and the interval between precipitation events. Our study suggests a general 
lengthening of dry spells (DSLs) in summer over continents, which is likely attributed to the strengthening of 
high-pressure anomalies. We also reveal a close and strengthening linkage between DSL length and summer 
heatwaves during the past decades. These findings are crucial for understanding the land-atmosphere feedback 
in the context of climate change.
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On the other hand, precipitation deficits could induce a temperature rise through the process of SM–atmosphere 
interaction (Berg et al., 2015). The lack of precipitation reduces SM and decreases evapotranspiration, which 
leads to the increase of sensible heat flux and warms the temperature (Mo & Lettenmaier, 2016). Stronger inter-
action between precipitation and temperature anomalies may be expected due to the enhanced surface water and 
energy exchange in the context of climate change (Zhang et al., 2020). Despite the recent effort, the process by 
which summer temperature anomalies lead to changes in precipitation pattern or precipitation deficits which in 
turn influences the summer temperatures remains not to be fully understood (Barbero et al., 2017; Seneviratne 
et al., 2002; Wasko & Nathan, 2019).

Previous studies have suggested there exists longer dry or wet periods over many regions (Allen et al., 2013; 
Pendergrass & Knutti, 2018), which is likely due to changing blocking high dynamics (Zolina et al., 2013) or 
warming summer (Ye & Fetzer, 2019). A dry spell (DSL) is defined as a continuous period of days without signif-
icant rain. Previous studies show that DSLs are lengthening in some regions, such as Europe (Zolina et al., 2013), 
Russia (Ye & Fetzer,  2019), the Mediterranean (Raymond et  al.,  2016), and the United States (Groisman & 
Knight, 2008). The lengthening of DSLs has also been associated with accelerated warming (Du et al., 2020; 
Ye & Fetzer,  2019). However, it remains unclear whether it is a widespread phenomenon across continents. 
Additionally, little attention has been paid to the linkage between DSLs and heatwaves over all the continents in 
a systematic way.

Here, we examined the evolution of DSLs over the world's continents under the changing climate in recent 
decades and particularly their linkage with the occurrence of summer heatwaves on a global scale. We began by 
showing a general lengthening of DSLs over the continents, then examined the relationship between the length 
of DSL and the duration of each heatwave event (HWD) and the heatwave severity (HWS), and tried to reveal 
potential mechanisms which can explain how DSLs affect duration and severity of heatwaves.

2. Materials and Methods
2.1. In Situ Climate Observations

We use in situ climate records obtained from the Global Surface Summary of the Day (GSOD) database to 
quantify the changes in the DSL and the duration and severity of heatwaves. GSOD data set was developed from 
the Integrated Surface Hourly database by the US National Climatic Data Center. Records of meteorological 
variables including temperature, precipitation, and wind speed at over 9,000 weather stations are available, and 
the accuracy of the original observations has been checked extensively and corrected through a series of quality 
control procedures. The daily historical data for the period 1973–2018 with relatively complete records over 
2,919 stations were selected for analysis.

2.2. ERA Reanalysis Data Set

Monthly geopotential height (GPH) and wind data with a spatial resolution of 0.25°  ×  0.25° for the period 
1979–2018 and hourly climate data (temperature) and surface energy (latent and sensible fluxes) and SM reanal-
ysis data with a spatial resolution of 0.25° × 0.25° for the period 1981–2018 were obtained from the ERA5 data 
set issued by the European Centre for Medium Range Weather Forecasts (https://www.ecmwf.int/) (Hersbach 
et al., 2020). This data set is a new generation of climate reanalysis replacing the original ERA-Interim reanalysis 
(Hoffmann et al., 2019) with improvements in data accuracy and temporal and spatial resolution. This product has 
been used extensively in climate change studies (Harrington & Otto, 2020; Oueslati et al., 2017; von Schuckmann 
et al., 2020).

2.3. Other Data Sets

Other datasets used in this study are monthly precipitation and potential evapotranspiration for the period 
1973–2018 obtained from the Climatic Research Unit (CRU) TS Version 4.03 Google Earth Interface 
(1901–2018) (Harris et  al.,  2020), and the daily Global Precipitation Climatology Centre (GPCC) precipita-
tion for the period 1982–2018, provided by national meteorological and hydrological services, regional and 
global data collections as well as World Meteorological Organization Global Telecommunication System-data. 
Additionally, We obtained data for global 0.25° daily root-zone SM from 1980 to the present from the Global 
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Land Evaporation Amsterdam Model (GLEAM) Version 3 (Martens et al., 2017). The Normalized Difference 
Vegetation Index (NDVI) data, with a spatial resolution of 0.083° × 0.083° for every 15-day interval, spanning 
the period 1982–2015, were derived from the Global Inventory Monitoring and Modeling System (GIMMS) 
NDVI3g data set (https://ecocast.arc.nasa.gov).

2.4. Calculation of Dry Spell and Heatwaves

A DSL is defined here as the number of consecutive days with precipitation less than 1 mm/day, which is a 
widely used definition in previous studies (Agnese et al., 2014; Brunetti et al., 2004; Groisman & Knight, 2008). 
We focused our analysis on summer (June–August in the Northern Hemisphere and December to the following 
February in the Southern Hemisphere) to reveal the potential relationship between DSLs and heatwaves. Stations, 
where more than 10% of the precipitation and temperature records were missing during summer over the period 
1973–2018, were excluded from the analysis. For stations with <10% of data missing, we filled the gaps by linear 
interpolation (Du et al., 2020). This left 1,209 stations for analysis of the long-term DSL trend. The DSLs ranged 
from 1 day to more than 10 days and their frequencies were counted for each station.

A heatwave is defined as a period of consecutive days (at least 3 days) with maximum temperature exceeding 
the 90th percentile relative to the climatological maximum temperature in summer over the period 1973–2018 
(Perkins et al., 2012; Pezza et al., 2012). The duration of each HWD was determined for each station. Further-
more, the HWS was also calculated as the sum of temperature exceedances above the 90th percentile threshold 
throughout the heatwave (Brown, 2020).

2.5. Relationship Between Dry Spell Length and Heatwaves

The long-term trends of annual summer mean DSL, HWD, and HWS were detected using the Mann–Kendall 
trend test. The partial correlations between annual summer mean DSL and HWD/HWS were analyzed, with 
annual summer mean precipitation controlled, to reveal the relationship between DSL and HWD/HWS.

3. Results and Discussion
3.1. Lengthening Dry Spells

Figure 1a shows the global pattern of the trend in the average DSL during summer from 1973 to 2018 recorded 
by 1,209 stations with continuous precipitation observations. We observed a clear, significant increase in DSL 
in 44% of the stations studied, mainly in China, southern Europe, and the western United States where there is a 
dense network of observations. In contrast, only 16% of stations had a significant decrease in DSL. Globally, the 
average DSL increased at a rate of 0.46 day/decade (Figure S1 in Supporting Information S1). At the continental 
scale (Vautard et al., 2010; Zeng et al., 2018), the largest increase in DSL was observed in Central Asia with a rate 
of 1.78 day/decade, followed by Europe, North America, and East Asia, with rates of 0.68 day/decade, 0.29 day/
decade, and 0.19 day/decade, respectively. Figure S2 in Supporting Information S1 presents the trends of different 
DSLs ranging from shorter than 3 days to longer than 10 days during 1973–2018. Decreasing trends tend to be 
associated with relatively short DSLs, whereas increasing trends were often linked to longer DSLs. In addition, 
the total length of DSLs in summer was also counted, and demonstrates a similar pattern to Figure 1a (Figure S3 
in Supporting Information S1), suggesting an increase in the total number of dry days in summer.

The occurrences of DSLs are generally associated with persistent abnormal high pressures (Schubert et al., 2014; 
Ye & Fetzer, 2019). To find causes for the lengthening of DSLs, we investigated the changes in the regional 
atmospheric circulations based on the ERA5 data set. Figure 2 shows the composite maps of GPH and wind 
anomalies at 500 hPa of the 8 years (10% of the total period) having the longer DSLs (Figures 2b–2d) and 8 years 
having the shorter DSLs (Figures 2e and 2f) during 1979–2018, respectively, for the three regions with significant 
lengthening DSL. Anomalies are relative to the climatological average for the period 1979–2018, excluding the 
16 years with the longer or shorter DSLs. An opposite pattern of GPH was observed between periods with the 
longest DSL and shortest DSL. The three regions are controlled by high atmospheric pressure in the summer 
with long DSLs while low atmospheric pressures were linked with shorter DSLs. In addition, the GPH around 
the high-pressure center significantly increased, and presents a significant synchronism with the variation of 
DSL, implying that the strengthening of abnormal high pressures is a driver of the lengthening of DSLs across 

https://ecocast.arc.nasa.gov
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these three regions during 1979–2018 (Figures 2h–2j). In addition, a contrasting pattern between the north and 
the south of Europe with decreasing and increasing DSLs was observed. K-means clustering analysis (Arthur 
& Vassilvitskii, 2007) on GPH divides the whole region into distinct two regions with a decreasing GPH in the 
north and an opposite trend in the south (Figure S4 in Supporting Information S1). Strong correlations between 
GPH and DSL were observed for both regions, which further confirms the great impact of changes in atmospheric 
pressure on DSL variations.

3.2. Relationship Between Dry Spells and Heatwaves

Both HWD and HWS during summer have increased over the past four decades at the majority of stations 
(Figures 1b and 1c). The spatial pattern of trends of heatwave duration and HWS are generally consistent with the 
distribution of trends in DSLs in the northern extratropics during summer. Partial correlation analysis suggests a 

Figure 1. Spatial patterns of trends of dry spell length (DSL) and heatwaves, and annual correlations between DSL and heatwaves during summer from 1973 to 2018. 
(a–c) Trends of average DSL, heatwave duration, and heatwave severity. The insets indicated significant increase (Inc*; p < 0.05; dark red), increase (Inc; light red), 
decrease (Dec; light blue), and significant decrease (Dec*; p < 0.05; dark blue) trend, respectively. (d and e) Partial correlations between annual summer mean DSL and 
heatwave duration and severity, respectively, with annual summer mean precipitation controlled. The insets indicated significant positive correlations (Pos*; p < 0.1; 
dark red), positive correlations (Pos; yellow), negative correlations (Neg; light blue) and significant negative correlations (Neg*; p < 0.1; dark blue).
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Figure 2. The relationship between summer geopotential height (GPH) and dry spells (DSLs) from 1979 to 2018. (a) Same with Figure 1a, trends of average DSL. 
Black frames mark the sampled areas. (b–g) Composite map of summer mean GPH and wind anomalies at 500 hPa for 8 years when DSLs were anomalously long 
(b–d) or short (e–g), respectively. The yellow line marks the grids where the GPH anomalies at 500 hPa over 80th quantile over the same period, which means the 
high-pressure center that controls these regions. Contour lines show the climatology of the GPH. (h–j) The summer average GPH over the regions marked by the yellow 
line in b–d, respectively, and the regional mean DSLs during 1979–2018. The partial correlation coefficient between GPH and DSL in H, I, and J are 0.64 (p < 0.01), 
0.47(p < 0.01), and 0.48 (p < 0.01), respectively, with summer mean precipitation controlled.
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strong coupling between DSL and HWD and HWS. As shown in Figure 1c, positive correlations between DSLs, 
HWD, and HWS were observed over 722 and 744 stations (about 60% and 62% of total stations) suggesting that 
the lengthening of DSLs is often closely coupled to the intensification of heatwaves.

The observed close linkage between DSL and heatwave can be attributed to the coupling between SM deficits and 
high-temperature anomalies (Hirschi et al., 2011; Mueller & Seneviratne, 2012; Zhang et al., 2020). As atmos-
pheric circulation anomalies develop, the reduced cloud cover and enhanced solar radiation associated with  a DSL 
promote evapotranspiration and thus constrain the rapid increase of surface temperature (Figure S5 in Supporting 
Information S1). As the DSL lengthens, SM is gradually consumed and evapotranspiration is inhibited, and the 
increased sensible heat warms the surface air more. If there are no precipitation events to disrupt this warming 
process, a heatwave will be triggered (Liu et al., 2020). To test this hypothesis, we examined the surface energy 
exchange process during DSLs of European, Eastern Asia, and North America from 1982 to 2018. These regions 
have relatively dense weather stations (Figure 3). The energy fluxes and SM during DSLs whose lengths were 
longer than the 90th quantile was selected and averaged, and their anomalies relative to the first day of the DSL 
were calculated. Here we focus on the period 09:00–13:00 local time each day, during which heating at the land 
surface reaches a maximum and controls the magnitude of the diurnal temperature peak (Teuling et al., 2010). 
Considering the potential regulation of vegetation on energy distribution, the variation of energy fluxes during 
DSLs was analyzed for different vegetation greenness gradients (indicated by NDVI). In Europe (Figure 3a) and 
East Asia (Figure 3b), we observe an increase in latent heat (LE) flux, but a roughly invariant sensible heat flux 
in the earlier stages of DSLs across regions with high vegetation greenness (regions with NDVI ranging from 
0.6 to 0.8). As SM decreases, the elevated sensible heat flux surpasses the latent flux and causes a rapid increase 
in surface temperature. However, in a region with lower vegetation greenness (regions with NDVI  ranging from 
0.2 to 0.4), the short-period roughly invariant sensible heat flux is not apparent, while a short-term increase of 
LE flux is also observed. The observed differences in the energy exchange processes among vegetation green-
ness gradients during the early stage of DSLs are likely due to the difference in plant water use strategy under 
drought stress (Liu et al., 2020). In contrast to lower vegetation greenness regions, the higher vegetation green-
ness regions are usually covered by forests with deep roots which can access deep soil water to maintain high 
evapotranspiration during the earlier stage of drought. This leads to a depressed increase in sensible heat flux. The 
short-period increasing LE flux and stable sensible heat flux were not found in areas with dry climates such as 
western North America (Figure 3c) which can be due to the limited SM, leaf evaporation, and transpiration there. 
Additionally, there was no close linkage between DSL and heatwave in monsoon regions due to the influence of 
ocean-atmosphere teleconnections (Qing et al., 2022). Specifically, even if the precipitation deficit during a DSL 
leads to decreasing SM and evapotranspiration, once the monsoon starts, the atmospheric humidity level tends to 
increase, and then the warming process was disrupted (Mo & Lettenmaier, 2016).

We discovered that summer heatwaves in extratropics are intensified by lengthening DSLs. This result is in 
accord with previous results that flash droughts increased significantly over China (Wang & Yuan, 2018; Yuan 
et al., 2019), while it seems to be contrary to other studies which have suggested that heatwave-induced flash 
droughts across the conterminous U.S. are in decline over the last century (Mo & Lettenmaier, 2015). This is 
because the process of a DSL associated with a heatwave is more like the process of flash drought caused by 
precipitation deficit than that driven by a heatwave. A flash drought could be triggered by abnormally high 
temperatures or precipitation deficits, and the heatwave-driven flash drought is caused by abnormally high 
temperatures. In contrast to heatwave-induced flash drought, flash drought caused by precipitation deficit has no 
obvious trend over the conterminous U.S. (Mo & Lettenmaier, 2016).

3.3. Dependence of DSL on Heatwaves

We then determined the average length of DSLs that were associated with a heatwave. This length was defined 
as the total number of dry days before the day when a heatwave occurred (Figure S6 in Supporting Informa-
tion S1). A basic prerequisite for the assumption that the DSL causes heatwave but not the opposite condition is 
whether heatwaves are followed by DSLs. For each station, the specific lengths of the DSLs before each HWD 
were counted and averaged. Because this analysis does not require a complete daily record of temperature and 
precipitation, we included as many stations as possible. Here, a total of 2,919 stations with more than 30 years' 
precipitation and temperature records during summer from 1973 to 2018 were selected. We found that there was a 
DSL day before 87.6% of heatwaves (Figure S7 in Supporting Information S1). An average of 75.7%, 65.2%, and 
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56.5% of heatwaves were preceded by 2–4 consecutive dry days, respectively. Figure 4a illustrates the distribution 
of the average DSL associated with heatwave during 1973–2018. The study area was divided into eight domains 
characterized by the spatial distribution of average DSL associated with heatwaves. The longest average DSL 
associated with heatwaves was found in southern Central Asia (19.2 days), followed by the Mediterranean region 
(16.7  days), North America (14.7  days), midwestern North America (10.6  days), and northern Central Asia 
(9.0 days). We then analyzed the trend in average DSL associated with heatwaves relying on an 11-year moving 
window over lands. Globally, the average DSL associated with heatwave across all selected stations was signif-
icantly (p < 0.01) shorten by −0.08 day per decade (Figure 4b). As shown in Figures 4c–4j, the regional DSLs 
associated with heatwaves were significantly shortened in southern Central Asia (−1.1 day per decade, p < 0.01), 

Figure 3. The sensible heat (h) and latent heat (LE) fluxes and soil moisture (SM) variation during dry spells (DSLs) across regions with different summer average 
NDVI during 1982–2018 in the Mediterranean region (a), East Asia (b), and western North America (c). Gray windows indicated the sampled locations, and the 
background maps are the multi-year (1982–2015) summer average NDVI, which indicated the greenness of vegetation. Only the DSLs whose lengths reached the 90th 
quantile were selected for analysis. The bar graph shows the changes of the SM during DSLs across regions with different climatological NDVIs, which is defined as 
the difference between the SM (m 3/m 3) on the last day (day 10) and that on the first day during DSLs.
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the Mediterranean region (−0.66 day per decade, p < 0.01) South Asia (−0.18 day per decade, p < 0.05), northern 
Central Asia (−0.16 day per decade, p < 0.1), and East Asia (−0.12 day per decade, p < 0.05). The shortened 
DSLs associated with heatwaves indicate an enhanced coupling between DSLs and heatwaves during the study 
period (Zhang et al., 2020), and corroborated a recent finding that flash droughts appear to take less time to 
develop in most global land due to the joint influence of SM depletion and atmospheric aridity (Qing et al., 2022).

4. Summary
This study provides the first analysis of global land-based observations of the evolution of DSLs and their rela-
tionships with heatwaves. Despite global mean precipitation over continents experiencing little change over the 
past decades (Dore, 2005; Ren et  al.,  2013; Sheffield et  al.,  2012), the findings from this study suggest that 
precipitation exerts a great impact on land surface energy exchange through changes in precipitation timing, 

Figure 4. Average dry spell (DSL) for DSLs associated with heatwaves during 1973–2018. The length is defined as the total number of consecutive dry days before the 
day when a heatwave occurred. (a) Spatial patterns of the average DSLs that followed by heatwaves. For each station, all DSLs followed by heatwaves were counted and 
averaged. (b–j) Average value (Ave., unit: day) and trends (Tr., unit: day per decade) of average DSL associated with a heatwave in (b) Global land, (c) eastern North 
America, (d) mid-high latitude Europe, (e) northern Central Asia, (f) East Asia, (g) midwestern North America, (h) the Mediterranean region, (i) southern Central Asia 
and (j) South Asia.
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frequency, and the interval between rain events in the northern extratropics. The feedback between SM and air 
temperature during a DSL provides essential information for heatwave that follows the DSL. Furthermore, the 
temporal evolutions of DSLs and heatwaves provide a new angle for the understanding of the spatiotemporal 
variation of compound dry-hot extremes (Alizadeh et al., 2020; Mukherjee & Mishra, 2021) and flash drought 
(Mo & Lettenmaier, 2016; Otkin et al., 2018; Qing et al., 2022).
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