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A B S T R A C T   

Although it is well known that precipitation and flood pulses in the Langcang-Mekong River Basin (LMRB) are 
largely impacted by monsoons, it is unclear to what extent flood inundation characteristics (i.e., inundation 
frequency, depth, area, and timing) in the basin respond to different monsoon types and monsoon combined 
effect, i.e., the Indian summer monsoon (ISM), the Western North Pacific Monsoon (WNPM), and their combined 
effect (ISWN). In this study, flood inundation in the LMRB during 1967–2015 was simulated by a hydrological- 
hydrodynamic model, from which the inundation characteristics were extracted and calculated. The monsoon 
impact on inundation characteristics was then quantified using the slope from linear regression model. The 
results show the monsoons and the ISWN overall have a positive impact on inundation frequency, depth, and 
area, while the inundation timing is usually advanced when the WNPM or the ISWN strengthens but delayed 
when the ISM strengthens. On average, a unit change in different monsoons can cause, 7.7%–14.2% change in 
inundation frequency, 5.3%–8.1% change in inundation depth and 4.3 days–5.8 days change in inundation 
timing for depth, which can also lead to 1.0%–4.3% change in inundation area and 2.8 days–3.8 days change in 
inundation timing for area. Also, the relative contributions of different monsoons and spatial distributions of the 
dominant monsoon were discussed. The results indicate different monsoons regulate different inundation 
characteristics, and suggest the coexistence of monsoon impacts. If the impact of the ISWN is ignored, the WNPM 
will play a more important role than the ISM in affecting the inundation.   

1. Introduction 

The Lancang-Mekong River Basin (LMRB) is one of the few flood- 
prone areas in Asia with the highest worldwide fatality rates induced 
by flooding (Chen et al., 2020). A significant increase in basin-wide 
temperature and changes in monsoon patterns have been projected by 
climate models (e.g., Pokhrel et al., 2018), and it is expected to cause 
increases in extreme rainfall, which could ultimately drive changes in 
flood regime of the basin (e.g., Lauri et al., 2012; Wang et al., 2017). 
Thus, understanding the flood dynamics under climate change in this 
basin is crucial to its future water resource and flood risk management. 

Up to now, a series of studies, including historical flood evolution (e. 
g., Delgado et al., 2010; Pokhrel et al., 2018; Chen et al., 2020) and 

future flood projections (e.g., Lauri et al., 2012; Hoang et al., 2016; 
Wang et al., 2017; Try et al., 2020a, b), have shown signals of increasing 
floods in the LMRB. Delgado et al. (2010) found the flood frequency 
increased during the last half century. Chen et al. (2020) also showed 
both the flood occurrence and maximum magnitude significantly 
increased during 1985–2018. Based on the future climate scenarios, Try 
et al. (2020a, b) predicted that the more severe flood magnitudes than 
under current climate conditions would occur by the end of this century, 
which might cause up to 43% and 55% increases in inundation area and 
inundation volume, respectively. With the likelihood of increasing 
floods in the LMRB, it is important to understand how climate change 
affects the flood regime. 

Typically, climate change affects flood mainly by rainfall. The 
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anomalies in atmospheric general circulation such as monsoon changes 
can cause regional rainfall change (e.g., Yang et al., 2019). Increasing 
moisture in the atmosphere due to global warming, could also lead to an 
increase in magnitude and frequency of rainfall (e.g., Kunkel et al., 
2013). In the LMRB (Fig. 1a), a monsoonal climate with distinct wet and 
dry seasons dominates its hydro-climate conditions (e.g., Yang et al., 
2019). Over 80% of annual precipitation and 80%–90% of discharge 
occur during May to October, which can be attributed to the monsoon 
(Costa-Cabral et al., 2008; Delgado et al., 2012). Therefore, flood in this 
basin is mainly dominated by monsoon induced rainfall, with other 
sources being snowmelt from the Tibetan Plateau and localized tropical 
storms (Delgado et al., 2012). 

In general, the Indian summer monsoon (ISM) and Western North 
Pacific Monsoon (WNPM) are two systems regulating the monsoon 
rainfall in the LMRB (e.g., Ding and Chan, 2005; Delgado et al., 2012). 
The rainy season precipitation in the west of LMRB is significantly 
influenced by the ISM, while that in the southeastern LMRB is signifi-
cantly affected by the WNPM (Yang et al., 2019). Significant positive 
correlations between rainfall and the WNPM and ISM were found over 
29.3% and 12.8% regions in the LMRB, respectively (Fan and Luo, 
2019). More importantly, it was found that the interannual variability of 
the rainy season precipitation in the LMRB is significantly modulated by 
the combined effect of the ISM and WNPM (e.g., Yang et al., 2019). A 
positive correlation between rainfall and the combined effect of two 
monsoons was obtained in the LMRB (Yang et al., 2019). Further, studies 
on the monsoon impact on rainfall were also extended to the impact on 
discharge. Xue et al. (2011) reported the ISM impacts on annual mean 
discharge in the middle to lower reaches of the Mekong River. A positive 
relationship between the WNPM and discharge averaged from June to 
November in the southern LMRB regions was found by Delgado et al. 
(2012). Similar results were also reported by Fan and Luo (2019), where 
they showed the downstream river flow from June to September is 
modulated by the WNPM. 

In addition to the studies of monsoon impacts on rainfall and 
discharge, the study of monsoon impacts on flood pulse characteristics 
across the LMRB was caried out by Wang et al. (2022). It was found that 
the flood start date was advanced, while Q10 and flood volume increased 
during the strong monsoon years. However, the flood represented by 

discharge in Wang et al. (2022) does not necessarily provide valuable 
information on the damage caused by flood, which is due to the fact that 
river characteristics, such as the river channel passing capacity at 
different locations, can significantly affect the flood damage. Instead, 
the flood represented by inundation, a visual response of water level/ 
discharge to heavy storms and critical to the social damage of the flood, 
can provide more information on flood damage. Nevertheless, few 
studies have assessed the monsoon impact on inundation. It is still un-
clear how monsoons affect inundation in the LMRB, which is important 
to the research of climate related disasters in the basin. 

Usually, there are several approaches available for assessing the 
monsoon impact on flood. Observation, in particular, is a commonly 
used method to analyze the monsoon impact on flood. Delgado et al. 
(2012) and Räsänen and Kummu (2013) have separately studied the 
impacts of monsoons and El Niño-Southern Oscillation on flood, where 
the in-situ flood discharges upstream of the Cambodian and Vietnamese 
Mekong River floodplains (i.e., the Cambodian and Vietnamese parts of 
the LMRB, CVM) were focused. Chen et al. (2021) also used observed 
water level in the Tonle Sap Lake (TSL) to analyze the impacts of El 
Niño-Southern Oscillation, Pacific Decadal Oscillation and the Indian 
Ocean Dipole on flood pulse parameters. However, the analyzes based 
on observation are hard to extend across the whole river basin due to the 
limited in-situ stations. Assessment of the impacts of climate variables, 
such as the summer monsoon, on flood could also be biased if limited in- 
situ stations were used (Wang et al., 2022). Further, remote sensing can 
also be used to analyze the monsoon impact on flood at regional scales, 
but it suffers from data deficiencies due to the issues of the satellite 
repeat cycle, cloud cover and vegetation (e.g., Ji et al., 2018; Boergens 
et al., 2019; Shin et al., 2020). Hydrological models can provide basin- 
wide discharge, which can further provide inundation by a discharge 
rating curve, but this is not an ideal tool for flood inundation due to the 
backwater effect and channel bifurcation in the lower floodplain (e.g., 
CVM). In particular, a unique flow reversal between the TSL and the 
Mekong River mainstream is formed during May to September (Kummu 
et al., 2014), making the hydrological regime more complex. A hydro-
dynamic model considering the backwater effect and channel bifurca-
tion is therefore needed to simulate flood inundation in this basin. 

In view of the research gap identified above (i.e., unclear knowledge 

Fig. 1. Overview of the Lancang-Mekong River 
Basin (LMRB, a), and the distribution of daily flood 
occurrence frequency during June-November in 
2001–2015 (b) using the Moderate-Resolution Im-
aging Spectrometer postprocessing product (MODIS, 
see Ji et al., 2018). The frequently flooded regions 
are mainly in regions A (Tonle Sap Lake, TSL, 
Kummu et al., 2014) and B (Vietnamese Mekong 
Delta, VMD, Minderhoud et al., 2019), which are 
both located in Cambodian and Vietnamese parts of 
the LMRB (CVM). Nineteen hydrological stations 
were used for model calibration and validation (a).   
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of monsoon impacts on flood inundation) and approach available (i.e., 
hydrodynamic modeling), this study aims to analyze the monsoon 
impact on flood inundation (i.e., inundation depth, frequency, area, and 
timing) in the LMRB with a special focus on the CVM regions (i.e., the 
frequently flooded regions in the basin, Fig. 1b). A hydrodynamic model 
was used to generate flood inundation characteristics, with monsoons 
indices collected and calculated to represent the monsoon strengths. 
Then the slope from linear regression was used to quantify the monsoon 
impact on inundation characteristics. The relative contributions of the 
monsoon to flood inundation and spatial distributions of the dominant 
monsoon (i.e., the monsoon with the largest contribution to inundation) 
in affecting flood inundation were also discussed. 

2. Data and methods 

2.1. Model description 

The Catchment-Based Marco-scale Floodplain model (CaMa-Flood, 
v3.6.2, Yamazaki et al, 2013) considering the regional parameterization 
(Wang et al., 2021) was used to simulate flood inundation depth at 500 
m spatial resolution, with a Variable Infiltration Capacity (VIC, v4.20d, 
Liang et al., 1994, Liang et al., 1996) model providing runoff at a spatial 
resolution of 0.25◦×0.25◦ as the input. The meteorological forcing data 
including precipitation, temperature, and wind speed during the period 
from 1961 to 2015 to run the VIC model were collected from CN05.1 
(Wu and Gao, 2013), Asian Precipitation-Highly Resolved Observational 
Data Integration Toward the Evaluation of Water Resource (Yatagai et 
al, 2009) and Princeton hydrological dataset (Sheffield et al., 2006). The 
spin-up period for both models was 1961–1966, while the calibration 
period was set to 1967–2007. In-situ water level and discharge series at 
Nineteen hydrological stations (see Fig. 1 for the gauging station spatial 
distribution), mainly collected from Henck et al. (2011), Mohammed 
et al. (2018), Annual Hydrological Reports of China, and Mekong River 
Commission, were used to calibrate the model parameters. Further de-
tails on model inputs, calibration, and model settings are given in Wang 
et al. (2021). The daily Moderate Resolution Imaging Spectrometer 
based water surface database (MODIS, Ji et al., 2018) from 2001 to 
2015, and monthly Landsat based Global Surface Water dataset (GSW, 
Pekel et al., 2016) from 1987 to 2015 were also collected as flood 
inundation validation datasets. Here, since these two remote sensing 
datasets do not contain inundation depth information, floodplain with 
an inundation depth over 0.1 m and river channel in the model were 
considered to be inundated to make full comparisons with MODIS and 
GSW by following Wang et al. (2021). The Nash-Sutcliffe efficiency 
coefficient, Pearson correlation coefficient and relative error were used 
to assess the model performance at gauging stations. Because of the 
impacts caused by cloud, vegetation cover, and the satellite repeat cycle 
(e.g., Ji et al., 2018; Boergens et al., 2019; Shin et al., 2020), only the 
probability of detection, based on Wu et al. (2014), was calculated to 
evaluate the model performance in simulating flood inundation during 
the flood season. Here, the probability of detection was defined as the 
ratio of the simultaneous inundation occurrence frequency (i.e., the 
number of inundation days) which occurred for both the model and 
remote sensing dataset (MODIS or GSW), to the inundation occurrence 
frequency that occurred for the remote sensing dataset. Referring to 
Delgado et al. (2012) and Triet et al. (2020), the flood season was 
defined as a period from June to November, and the non-flood season 
was from December to May. 

2.2. Monsoon index 

Daily monsoon index data based on the definition of Wang et al. 
(2001) were collected from the Asia-Pacific Data-Research Center. The 
mean value of this index data from June to September each year was 
then calculated to represent the monsoon intensity for each year. A 
simple sum of the ISM and WNPM indices with the same weights 

developed by Yang et al. (2019) was also adopted to characterize the 
monsoon combined effect (ISWN, the abbreviation of ISM–WNPM, 
assumed to be a monsoon for an easier description hereafter). These 
three monsoon indices were then normalized (see Fig. 2) and used to 
analyze the monsoon impact on flood inundation. 

2.3. Inundation characteristics 

The inundation in the flood season was considered in this study. A 
grid for floodplain or river channel with the simulated inundation depth 
of 0.50 m or greater was thought to be inundated catastrophically, and 
was used for the analyses of monsoon impact in the following. This 
threshold of 0.50 m for flood inundation has also been used by Try et al. 
(2018), Try et al. (2020c) and Triet et al. (2018), Triet et al. (2020). Four 
inundation characteristics were used: frequency, depth, area, and timing 
(for flood peak). The first two and the third one were addressed at grid 
and regional scales, respectively; while the last one was considered both 
at grid and regional scales. The inundation frequency for a year was 
defined as the ratio of days with inundation to the whole duration of the 
flood season. The variables for inundation depth are the average inun-
dation depth and maximum inundation depth, which were defined as 
the annual mean and maximum values of inundation depths, respec-
tively. Similarly, two variables characterizing the inundation area, i.e., 
mean inundation area and maximum inundation area, were separately 
defined as the annual mean and maximum values of inundation areas, 
and calculated year after year. Here, the inundation area for a particular 
day was calculated as the sum of the grid areas for grids that are inun-
dated. Two inundation timing variables (i.e., depth and area) were also 
considered in this study, i.e., the maximum inundation depth time (i.e., 
the day of the year that the maximum inundation depth occurs) at grid 
scale, and the maximum inundation area time (i.e., the day of the year 
that the maximum inundation area occurs) at regional scale, where the 
inundation timing for area was analyzed in the characteristic of inun-
dation area for convenience. 

2.4. Analysis of monsoon impact 

The p-value calculated from a significance test of the Pearson cor-
relation coefficient between the inundation variable and monsoon index 
(two-tailed t-test) was adopted to characterize the monsoon impact on 
inundation. Referring to the practice of the definition of monsoon 
anomaly (e.g., Wang et al., 2001; Li et al., 2016), which treats the 
monsoon as strong or weak when the normalized monsoon index ex-
ceeds one standard deviation (σ), a p-value of 0.32 (0.146 for Pearson 
correlation coefficient in this paper) corresponding to one σ criteria, was 
used as the threshold of the monsoon impact on inundation. This option 
considered the model capacity in modeling the floods, where the floods 
are the high value parts of discharge/water level and are always 
underestimated in modeling practice (e.g., Wang et al., 2021). When the 
p-value in a given region is no more than 0.32, the impact of monsoon on 
inundation in this region exists and this region can be treated as a 
monsoon impact region; otherwise, the impact is ignored. Delgado et al. 
(2012) also thought that a station with Pearson correlation coefficient 
less than 0.1 meant the flood in this station was not affected by the 
monsoon. In addition, regions with p-values no more than 0.05 and 0.10, 
generally used to indicate significance, were also marked to reflect a 
significant impact of the monsoon on inundation, but only the results of 
p-values no more than 0.05 were presented in the results for reference. 

The slope from the linear regression model (Eq. (1), Hameed et al., 
1997) was used to obtain the inundation response to one unit change in 
the monsoon index: 

y = ax+ b+ ε (1)  

where y is the inundation variable (e.g., depth, frequency), x is the 
normalized monsoon index. a, b are the slope and constant, respectively. 
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ε is the error. If the slope is positive (or negative), then the monsoon 
impact on inundation is considered positive (or negative), that is, the 
inundation increases (or decreases) when the monsoon strengthens (i.e., 
monsoon index increases). To characterize the percentage change of 
inundation, the long-term average value was used, which was calculated 
as the average value of the inundation variable for the days with inun-
dation. Then the slope dividing by the long-term average value was 
taken as the percentage change of flood inundation (see Eq. (2)): 

y - yavg

yavg
=

a
yavg

x+

(
b

yavg
- 1

)

+ ε (2)  

in which yavg is the long-term average value, a/yavg was the percentage 
change of flood inundation. A multi-linear regression model (Eqs. (3)– 
(4), Üneş et al., 2020) was also used to characterize the relative con-
tributions of monsoons to inundation, and identify the spatial 

distribution of the dominant monsoon (i.e., the monsoon with largest 
relative contribution) in affecting inundation: 

y =
∑n

i=1
aixi + a0 + ε (3)  

ri =
|ai|

∑n
i=1|ai|

(4)  

where ai (i = 0,1, …, n) is the regression coefficient, xi, ri (i = 1, 2, 3 for 
this issue) are the normalized monsoon index and relative contribution 
for each xi, respectively. y is the inundation variable. A similar approach 
has also been applied by Wang et al., (2020). Here, if the monsoon 
impact on inundation does not exist (i.e., p-value over 0.32), then this 
type of monsoon was excluded in the multi-linear regression analysis. 
Note that the ISWN index is a simple sum of the ISM and WNPM indices, 
though it was normalized before analysis (see section 2.2), suggesting 

Fig. 2. Normalized summer monsoon indices and normalized basin average summer rainfall (June to September) between 1967 and 2015. Indian Summer Monsoon 
(ISM), Western North Pacific Monsoon (WNPM) and their combined effect ISWN were illustrated. The number in parentheses is the slope of monsoon index dur-
ing 1967–2015. 

Fig. 3. Flood season water level simulations in comparison with observations around the frequently flooded regions (a-d). “RE”, “NSE” and “R” represent the relative 
error, Nash-Sutcliffe efficiency coefficient, and Pearson correlation coefficient, respectively. Seven stations were selected. The water levels in the non-flood season 
were also used for reference. 
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that multicollinearity could exist between the ISM (or WNPM) and the 
ISWN. The ridge regression was then applied in the solution procedure 
of the Multi-linear regression model, and details on this can be seen in 
Hoerl and Kennard (1970). 

3. Results 

3.1. Model validation 

The simulated and observed long-term flood season water levels near 
or located in the frequently flooded regions are shown in Fig. 3. The 
results for simulated and observed water levels show that the water 
levels are well simulated with relative errors less than 10% and Pearson 
correlation coefficients larger than 0.9 at most stations. The daily Nash- 
Sutcliffe efficiency coefficients are all no less than 0.84 at five out seven 
stations. Also, the simulations of water level variation at stations (i.e., 
Prek Kdam and Kompong Luong) on the Tonle Sap River (TSR) and TSL 
indicate the reverse flow into the TSL from the Mekong River mainstem 
could be simulated with satisfactory performance by the hydrodynamic 
model that considers the backwater effect. However, the performance of 
water level at Can Tho and My Thuan stations is poor, where these two 
stations are located near the Mekong River estuary. There are two main 
possible explanations for this. Firstly, these two stations are strongly 
affected by the tide backwater effect (Peng et al., 2020), and secondly, 
river-bed mining in the Vietnamese Mekong Delta (VMD), which can be 
traced back to 1990s (Park et al., 2020), causes the water level to be 
reduced (Fig. 3f, the lower observed water levels after 1995 than 
before). These two factors were not considered in the model and thus 
may cause the poor performance. It is noted that the water levels at 
stations such as Kompong Luong and Chau Doc show obvious high 
values in December and the following January. This could be attributed 
to the release of water from the TSL in these months when the water 
level in the TSL is higher than the VMD (Kummu et al., 2014; Wang 
et al., 2021), which therefore maintains the high water levels at these 
stations. 

The flood season spatial inundation map comparisons with MODIS 
and GSW are illustrated in Fig. 4. The results show that the model can 
capture the spatial inundation distribution well, especially in the TSL 

and VMD, where inundation occurs frequently during the flood season 
(Fig. 4). On average, 84.2% of the inundation occurrence frequency for 
MODIS is captured by the model in these regions (i.e., the average 
probability of detection is 0.842). Similar results are also obtained by 
using monthly GSW. It shows 88.8% of the inundation occurrence fre-
quency of GSW is captured. Note the difference between the GSW and 
MODIS in the TSL regions (Fig. 4a-4b), i.e., more flooded regions are 
derived by GSW, potentially indicating the GSW has a better land surface 
waterbody detection capacity. Considering the frequently flooded re-
gions are mainly located in the CVM, inundation analyses were therefore 
mainly focused on the CVM in the following sections. 

Fig. 5 illustrates how the mean flood season water level changes with 
the monsoon index at the selected stations. It is found that the slope 
between the simulated water level and monsoon index is smaller than 
that between the observed water level and monsoon index at most sta-
tions. Nevertheless, the tendency between the mean water level and 
monsoon index is well captured by the model, suggesting the model can 
be used to characterize the monsoon impact on inundation. Also, the p- 
value calculated from the simulated water level and monsoon index is 
generally larger than that calculated from the observed value, indicating 
the threshold of p-value to distinguish the monsoon impact on inunda-
tion should be higher than 0.05 (or 0.10) to contain more grids in which 
the inundation is truly affected by the monsoon. This may prove the 
reasonability of the p-value of 0.32 as the threshold of monsoon impacts 
on inundation. Additionally, it is worthy to note that, though the water 
levels at Can Tho and My Thuan are poorly simulated, the tendency 
between observed mean water level and monsoon index is reproduced 
by the model in most cases, but with a higher slope and lower p-value. 

3.2. Impact on inundation frequency 

The impacts of monsoons on inundation frequency are shown in 
Fig. 6. The results show the inundation frequency mainly increases when 
the monsoon strengthens (i.e., a positive impact). This could be attrib-
uted to the long retention time caused by the limited flood carrying 
capacity. Usually, when the monsoon strengthens, then the rainfall and 
flood volume could be larger (Delgado et al., 2012; Yang et al., 2019). If 
given the unchanged flood carrying capacity, the water flow out of the 

Fig. 4. The probability of detection distribution of inundation with 500 m resolution for the flood season. The daily MODIS (a) and monthly GSW (b) datasets were 
used and upscaled to 500 m as inundation references. Probability of detection values less than 10-3 were removed to show the inundation within the capacity of 
CaMa-Flood (i.e., the inundation that can be simulated by the model). 
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river cross-section could be limited, thus causing longer residence time 
and subsequently larger inundation frequency. For the ISM, regions 
showing a positive monsoon impact on inundation frequency are mainly 
in the outer TSL (Fig. 6a). While for the WNPM and the ISWN, regions 
with a positive monsoon impact on inundation frequency are mainly in 
the middle TSL (the inner TSL is the permanent water body), northern 
VMD, TSR, and the section between the Phnom Penh (i.e., confluence of 
the Mekong River and TSR) and Stung Treng station (hereafter abbre-
viated as PP-ST section). The difference in spatial distributions might be 
caused by the different impact areas of the monsoon on rainfall (see 
Yang et al., 2019; Fan and Luo, 2019; Wang et al., 2022). Further 
analysis of inundation pixel statistics indicates that 85.9% of the ISM 
impact regions have a positive monsoon impact on inundation frequency 
(Fig. 6a), while the percentages for the WNPM and the ISWN are 96.5% 
and 97.3%, respectively (Fig. 6b-6c). In the regions with a positive 
monsoon impact on inundation frequency, a unit increase in any one of 
the three monsoon indices, can lead on average to an increase of 0.03 in 
inundation frequency, i.e., the average slope between any one monsoon 
index and the inundation frequency is 0.03. When considering the per-
centage change of inundation frequency caused by monsoons, these 
increases in inundation frequency are 14.2% for the ISM, 7.7% for the 
WNPM, and 8.6% for the ISWN, respectively. In addition, the pro-
portions of the region significantly affected by the monsoon (p-value no 
more than 0.05) to that affected by the monsoon (p-value no more than 
0.32) are 17.3% for the ISM, 68.8% for the WNPM and 69.0% for the 
ISWN, respectively. This indicates the inundation frequency for over half 
of the WNPM and the ISWN impact regions is significantly affected by 
monsoons. In the regions significantly affected by the ISM, 89.6% of the 
regions show a positive monsoon impact on inundation frequency, with 
an average slope of 0.06 (21.8% for percentage change). For the WNPM, 
99.5% of significantly affected regions have a positive monsoon impact 
on inundation frequency, and the average slope for these regions with a 
positive monsoon impact is 0.03 (6.1%). Similar results can be found for 
the ISWN. 99.6% of the significantly affected regions show a positive 

monsoon impact on inundation frequency, and in these significantly 
affected regions with a positive monsoon impact, a unit increase in the 
ISWN index can cause a 0.03 (7.2%) increase in inundation frequency. 

3.3. Impact on inundation timing 

Fig. 7 illustrates the monsoon impact on inundation timing at grid 
scale (i.e., inundation timing for depth). The results reveal that the 
maximum inundation depth time is mainly delayed when the ISM 
strengthens (i.e., a positive impact). In contrast to the ISM, the WNPM 
and the ISWN mainly show negative impacts on maximum inundation 
depth time (Fig. 7b-7c). The reason for the negative monsoon impact on 
maximum inundation depth time is related to the positive relationship 
between discharge in the southern LMRB and the WNPM (Delgado et al., 
2012; Wang et al., 2022). That is, when the WNPM strengthens, the 
discharge inputting to the CVM system is larger, causing a higher water 
level outside the CVM. The maximum inundation depth time could be 
advanced due to the larger difference in water levels between the 
outside and inside of the CVM. However, due to the backwater effect in 
the lower regions (e.g., VMD) during the flood season, the flow of water 
induced by the ISM in the CVM may be greatly restricted, where 
discharge affected by the ISM in this region is mainly from local rainfall 
instead of the Mekong River mainstream (see Fan and Luo, 2019). It 
therefore causes a positive ISM impact on maximum inundation depth 
time. Further, the superposition of the positive impact of the ISM and 
negative impact of the WNPM can cause the impact of the ISWN on 
maximum inundation depth time to be either similar to the ISM or 
similar to the WNPM or even diminish (Fig. 7c). The regions showing a 
positive ISM impact on maximum inundation depth time are mainly 
distributed in the TSL, PP-ST section, and TSR, while those showing a 
negative WNPM impact on maximum inundation depth time are mainly 
in the TSL, TSR, northern and southern VMDs. The regions with a 
negative ISWN impact on maximum inundation depth time are in the 
southern VMD, while those with a positive ISWN impact are in the PP-ST 

Fig. 5. The mean water level for the flood season changing with the monsoon index. The number outside the parenthesis is the slope of the fitted line in linear curve 
fitting, where the unit is meters. The number in the parenthesis for each slope value is the p-value of the Pearson correlation coefficient. In each subfigure, the 
location of the slope for observation is followed by that for simulation. 
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section. This spatial distribution of the ISWN impact is mainly caused by 
the trade-off between the impacts of the ISM and WNPM on maximum 
inundation depth time. 95.7% of the ISM impact regions have a positive 
monsoon impact on maximum inundation depth time (Fig. 7a), while 
the proportions for the regions showing a negative monsoon impact on 
maximum inundation depth time are 99.2% for the WNPM and 84.1% 
for the ISWN, respectively. A unit increase in the ISM index in the re-
gions with a positive monsoon impact on maximum inundation depth 
time can lead to on average 4.6 days delay (1.5% change) in maximum 
inundation depth time, while the same change in the WNPM index in the 
regions with a negative monsoon impact can on average advance 
maximum inundation depth time by 4.3 days (1.5% change). The 
number for the ISWN is 5.8 days (i.e., 2.0% change). Further results 
show that 71.1% of the ISM impact regions are with a significant 
monsoon impact on maximum inundation depth time (Fig. 7d), and 
these values for the WNPM and the ISWN are 21.2% and 22.3%, 
respectively. For the ISM significant impact regions, almost all portions 
are with a positive monsoon impact on maximum inundation depth 
time, and a unit increase in ISM index can cause on average 4.4 days 
delay (1.4% change) in maximum inundation depth time. 

3.4. Impact on inundation depth 

Fig. 8 shows the monsoon impacts on average inundation depth. The 
results show the average inundation depth increases when the monsoon 
strengthens (i.e., a positive impact). This could be attributed to the 
larger flood volume caused by the rainy season precipitation in the years 
when the monsoon strengthens. The regions with a positive ISM impact 
on average inundation depth are mainly distributed in the outer and 
middle TSLs, and TSR (Fig. 8a), while the WNPM and the ISWN 

positively affect the average inundation depth in the TSL, PP-ST section 
and northern VMD (Fig. 8b-8c). The regions affected by the ISM have a 
proportion of 94.3% with a positive monsoon impact on average inun-
dation depth, while the proportions with positive monsoon impacts for 
regions affected by the WNPM and the ISWN are 88.8% and 94.3%, 
respectively. For regions with a positive monsoon impact on average 
inundation depth, a unit increase in the ISM index can cause 0.10 m 
(7.0%) increase in average inundation depth, while those in the WNPM 
and the ISWN indices can separately cause 0.14 m (5.3%) and 0.16 m 
(6.7%) increases in average inundation depth. For the ISM, only 17.9% 
of the monsoon impact regions are with a significant monsoon impact on 
average inundation depth, while the numbers for the WNPM and the 
ISWN are 62.5% and 72.2%. Further, in the regions significantly affected 
by the WNPM, 98.7% of the regions have a positive monsoon impact on 
average inundation depth, and 0.17 m (4.9%) increase in average 
inundation depth can be caused by a unit increase in the WNPM index 
for these regions with a positive monsoon impact. For the ISWN, 99.1% 
of the regions significantly affected by it have a positive impact on 
average inundation depth, and a unit increase in its index for these re-
gions with a positive monsoon impact can lead to 0.18 m (6.3%) increase 
in average inundation depth. 

The monsoon impacts on maximum inundation depth are illustrated 
in Fig. 9. Similar impacts of the monsoon on average inundation depth 
can also be found on maximum inundation depth, i.e., the maximum 
inundation depth increases when the monsoon strengthens (a positive 
impact). The ISM positively affects the maximum inundation depth in 
the TSL, TSR and northern VMD (Fig. 9a). While for the WNPM and the 
ISWN, the regions showing a positive monsoon impact on maximum 
inundation depth include the PP-ST section besides the TSL, TSR, and 
northern VMD (Fig. 9b-9c). The proportions for the regions with a 

Fig. 6. The distributions of slope (a, b, c) and its corresponding p-value of the Pearson correlation coefficient (d, e, f) between the monsoon index and the inundation 
frequency. The white color indicates the regions not affected by the monsoon, while the grey lines in d-f are the rivers and permanent water bodies. The numbers for 
“Area” and “Change” are area percentage and average change (percentage change) of regions showing the dominant impact tendency, respectively. The unit of 
“Change” is the same as that of slope. 
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positive monsoon impact on maximum inundation depth accounting for 
the monsoon impact regions are 97.2% for the ISM, 74.5% for the 
WNPM and 81.8% for the ISWN, respectively. In these regions with a 
positive monsoon impact on maximum inundation depth, a unit increase 
in the ISM index can lead to 0.16 m (6.8%) increase in maximum 
inundation depth, while those in the WNPM and ISWN indices can lead 
to 0.20 m (6.0%) and 0.25 m (8.1%) increases in maximum inundation 
depth, respectively. Also, only 12.7% of the ISM impact regions are with 
a significant monsoon impact on maximum inundation depth, while the 
numbers for the WNPM and the ISWN are 51.2% and 61.9%, respec-
tively. 98.9% of the regions with a significant ISWN impact on maximum 
inundation depth have a positive monsoon impact, and 0.29 m (8.0%) 
increase in maximum inundation depth can be caused by a unit increase 
in the ISWN index for these regions with a positive monsoon impact. 

3.5. Impact on inundation area 

The monsoon impacts on inundation area are shown in Fig. 10, 
which could be regarded as a total response of flood inundation to 
monsoon impacts at grid scale. The results show the WNPM and the 
ISWN have a positive impact on the mean inundation area during the 
flood season (Fig. 10a, 10d, 10g), and these impacts are significant in the 
TSL and CVM. However, the ISM has lesser impact on the mean inun-
dation area. The reason for the positive impact between the WNPM and 
mean inundation area could be the high positive correlation between the 
flood volume and WNPM (Delgado et al., 2012). Under the given terrain, 
a higher flood volume can lead to a larger inundation area. This might be 
also applied to the ISWN. As for the ISM, the lesser impact might be 
attributed to the low weight of the significantly affected regions in the 
regions with the ISM impact on average inundation depth (Fig. 8d). 
Further, a unit increase in the WNPM index can lead to increases in mean 
inundation area in the TSL, VMD and CVM of 3.8%, 1.0% and 2.5%, 

respectively. While that in the ISWN index can cause the mean inun-
dation area in the TSL, VMD and CVM to increase by 4.3%, 1.1% and 
2.7%, respectively. Except for the lesser impact of the WNPM on 
maximum inundation area in the VMD, almost all monsoons have a 
positive impact on maximum inundation area in the three considered 
regions. For the ISM, a unit increase in monsoon index can separately 
lead to 1.9%, 1.2% and 1.6% increases in maximum inundation area in 
the TSL, VMD and CVM. While for the WNPM, it can cause 2.8% and 
1.9% increases in the TSL and CVM, respectively. Further, 3.7%, 1.4%, 
and 2.7% increases in maximum inundation area in the TSL, VMD and 
CVM can be separately caused by the ISWN when its index increases one 
unit. 

Similar to the results of Fig. 7, the ISM has a positive impact on 
maximum inundation area time in the three analyzed regions, while the 
WNPM has a negative impact on it (Fig. 10c, 10f, 10i). The ISWN almost 
has no impact on maximum inundation area time. For the ISM, a unit 
increase in the monsoon index can delay the maximum inundation area 
times in the TSL, VMD and CVM by 3.7 days (1.3%), 3.8 days (1.3%), 
3.2 days (1.1%), respectively. However, a unit increase in the WNPM 
index can separately lead to the maximum inundation area times in the 
TSL, VMD and CVM being advanced by 3.2 days (1.2%), 3.6 days (1.3%) 
and 2.8 days (1.0%). 

4. Discussion 

4.1. Dominant monsoon distribution 

The spatial distributions of the dominant monsoon in affecting the 
inundation are shown in Fig. 11. The results reveal that both the WNPM 
and the ISWN have a larger spatial extent than the ISM in affecting 
inundation frequency (Fig. 11a), where they control 38.9% and 41.6% 
of the monsoon impact regions, respectively. The regions with a 

Fig. 7. The distributions of slope (a, b, c) and its corresponding p-value of the Pearson correlation coefficient (d, e, f) between the monsoon index and the maximum 
inundation depth time. The unit for slope is days. 
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dominant ISWN impact on inundation frequency are mainly distributed 
in the outer and middle TSLs, and PP-ST section, while for the WNPM, 
the regions are mainly in the middle TSL. The ISM has the largest impact 
extent in affecting maximum inundation depth time (Fig. 11b), by which 
about 58.8% of the monsoon impact regions (e.g., TSL, TSR, PP-ST 
section) are mainly regulated. For inundation depth, the ISWN has the 
largest spatial impact extent. 70.0% of the regions with a monsoon 
impact on average inundation depth are mainly affected by the ISWN, 
while this number on maximum inundation depth is 63.7%. The regions 
dominated by the ISWN for the two depths are mainly in the TSL, TSR, 
PP-CT section and northern VMD (Fig. 11c-11d). These indicate the 
ISWN can have a critical role in affecting inundation, but it cannot 
completely replace the ISM or the WNPM, which means no monsoon can 
dominate the inundation alone, suggesting the spatial coexistence of 
three monsoons in affecting inundation. Further decomposition of the 
ISWN impact on inundation (i.e., ignoring the ISWN impact) shows that 
the WNPM has a larger spatial impact extent in affecting inundation 
frequency (Fig. 11e) and depth (Fig. 11g-11h), whereas the ISM has a 
much larger spatial impact extent in regulating the inundation timing 
(Fig. 11f). The regions with the WNPM impact on inundation frequency, 
average inundation depth and maximum inundation depth account for 
72.3%, 71.0% and 74.0% of the monsoon impact regions, respectively. 
This number for regions with the ISM impact on maximum inundation 
depth time is 60.0%. In addition, the comparisons of the dominant 
monsoon spatial distributions before and after the ISWN decomposition 
show the ISWN dominant region covers most of regions that are domi-
nated by WNPM after decomposition (e.g., Fig. 11d,11h). This could 
indicate many overlap regions of the ISWN and the WNPM in affecting 
the flood pulses and even rainfall, and can be found in Wang et al. 
(2022). 

4.2. Monsoon contribution to inundation 

The relative contributions of three monsoons to inundation are 
shown in Fig. 12. The results show the ISWN and the WNPM contribute 
similarly to inundation frequency, which are 38.8% and 39.5%, 
respectively. For maximum inundation depth time, the contribution of 
the ISM is 43.4%, while the number for the WNPM is 42.1%, which are 
also similar in the contribution value. The ISWN contributes most to 
inundation depth (Fig. 12k-12l), where its relative contributions to 
average inundation depth and maximum inundation depth are 43.1% 
and 37.2%, respectively. The contribution difference between the 
WNPM and the ISWN is relatively large for average inundation depth, 
while it is relatively small for maximum inundation depth. Further an-
alyses of the monsoon contribution to inundation area indicate that the 
ISWN contributes most to the average and maximum inundation areas in 
the three considered regions, while the ISM contributes most to the 
inundation timing for area (see Fig. 10 for reference). 

The ISWN was further decomposed into the ISM and WNPM, and the 
relative contributions of the monsoon to inundation are shown in 
Fig. 13. The results show the contribution of the WNPM to inundation 
frequency and depth is larger than that of the ISM. On average, the 
WNPM contributes 70.7%, 62.0%, 58.5% to inundation frequency, 
average inundation depth and maximum inundation depth, respectively. 
For the maximum inundation depth time, the WNPM contributes 54.5%, 
while the number for the ISM is 45.5%. In addition, the WNPM con-
tributes more than the ISM to inundation area in most cases for the three 
considered regions. Nevertheless, the ISM contributes more to inunda-
tion timing for area (i.e., the day of the year that the maximum inun-
dation area occurs, see Fig. 10 for reference). 

Moreover, similar results to the dominant monsoon distribution are 
found by comparison of the monsoon relative contributions before and 
after decomposition of the ISWN, where the regions with the ISWN 

Fig. 8. The distributions of slope (a, b, c) and its corresponding p-value of the Pearson correlation coefficient (d, e, f) between the monsoon index and the average 
inundation depth during the flood season. The unit for slope is meters. 
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contributing to inundation, cover most of those with the WNPM 
contributing to inundation after the decomposition of the ISWN. This 
means the decomposition of the ISWN changes the monsoon contribu-
tions to inundation, where the WNPM contributes more to inundation, 
suggesting the WNPM has a larger impact than the ISM on inundation. 

4.3. Uncertainty and limitation 

Precipitation is the most crucial uncertainty source for the model, 
which affects the flood volume and thus may have some effects on the 
analyses of the monsoon impact on inundation. Nevertheless, the pre-
cipitation datasets used in this study were carefully selected, and one of 
these datasets has been proven to be one of the best datasets for hy-
drological modeling in the LMRB (e.g., Lauri et al., 2014; Try et al., 
2020c). Moreover, the best efforts have been made to decrease the 
impact caused by precipitation uncertainty through model calibration. 
The simulated results perform well when compared with the observed 
values. The digital elevation map, which plays an important role in 
determining the inundation of a grid, is also an important source of 
uncertainty for the reported results. To reduce the impact caused by this 
uncertainty, the inundation that can be simulated by the model (i.e., 
within the model capacity) was considered, which could cover a large 
part of the real inundation. Nevertheless, a high accuracy digital 
elevation map is still needed to improve the quality of analyses, but this 
may have less influence on the results due to its invariance during the 
whole simulation period and the relative change of inundation being 
considered. In this paper, the threshold for the monsoon impact on 
inundation is the p-value of 0.32; changing the threshold can also have 
some impacts on the results, especially for the quantification of the 
monsoon impact on flood inundation. However, this will hardly change 
the tendency of monsoon impact on inundation. 

This research only provides an initial assessment for the monsoon 

impact on flood inundation. The threshold for the monsoon impact on 
inundation (i.e., p-value) is worthy to be further studied, where the 
degree of monsoon impact can be usually underestimated by simulation 
(i.e., the impact exists in the observation but does not exist in the 
simulation, Fig. 5). Here, a lower threshold (e.g., a p-value of 0.05) 
might cause the monsoon impact regions to decrease dramatically, thus 
leading to the loss of much useful information (e.g., the analyses of the 
spatial distribution of the dominant monsoon). Since the tidal effect was 
not considered in the model, the inundation dynamics induced by 
monsoon rainfall in the southern VMD did not reproduce the observa-
tions well (Fig. 3f-3g). This is also worthy of a further study to assess the 
inundation separately caused by monsoon rainfall and ocean tide. It is 
noted that the monsoon combined effect ISWN was characterized by a 
simple linear combination of the ISM and the WNPM indices following 
Yang et al. (2019). A nonlinear superposition or linear superposition 
with different weights for the ISWN could have a higher correlation with 
precipitation and flood characteristics, and is worthy to be studied in 
future. In addition, the current study period covers 1967 to 2015 (i.e., 
49 years in total). Extending the analytical period is also of great in-
terest, which can provide more robust analyses. 

5. Conclusions 

This research used the VIC and the improved CaMa-Flood model to 
investigate the impacts of the ISM, the WNPM and their combined effect 
ISWN on flood season inundation over 1967–2015 in the LMRB. Inun-
dation characteristics including frequency, timing, depth, and area were 
selected and calculated, with the slope from a linear regression model 
reflecting the impact of the monsoon. The spatial distribution of the 
dominant monsoon and monsoon relative contributions to inundation 
were also discussed by using a multi-linear regression model. 

The water levels in the flood season at most stations were well 

Fig. 9. The distributions of slope (a, b, c) and its corresponding p-value of the Pearson correlation coefficient (d, e, f) between the monsoon index and the maximum 
inundation depth during the flood season. The unit for slope is meters. 
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Fig. 10. Mean inundation area (a, d, g), maximum inundation area (b, e, h), and maximum inundation area time (c, f, i) varying with three normalized monsoon 
indices in the TSL, VMD and CVM. k is the slope of the linear curve fitting, where the units for area and date are square kilometers (km2) and days, respectively. The 
number in the parenthesis for each k value is the p-value of the Pearson correlation coefficient. For research boundaries (i.e., TSL, VMD, CVM) see Fig. 1b 
for reference. 

Fig. 11. The dominant regions of the ISM, WNPM and the ISWN for inundation frequency (a, e), maximum inundation depth time (b, f), average inundation depth (c, 
g) and maximum inundation depth (d, h). The top panel considered the ISWN, while the bottom panel decomposed the ISWN (or ignored the ISWN). The numbers in 
the right-bottom of each subfigure are the area percentage for the dominant monsoon. 
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simulated by the model. At five out seven stations, the Nash-Sutcliffe 
efficiency coefficients were no less than 0.84 and Pearson correlation 
coefficients were larger than 0.90. On average, 80%–90% of inundation 
occurrences were captured within the model capacity. Further results 
characterizing the flood season water level varying with the monsoon 
index indicated that the slope from the model was generally under-
estimated but with the same tendency. 

The ISM, WNPM and the ISWN positively affected inundation fre-
quency, depth, and area. At least 74.5% of the regions had positive 
monsoon impacts on frequency and depth. Further, the inundation 
timing for depth or area was delayed when the ISM strengthened, while 
it was advanced when the WNPM or the ISWN strengthened. At least 
84.1% of the regions affected by the monsoon showed delayed inun-
dation timing for depth when the ISM strengthened and advanced 
inundation timing for depth when the WNPM or the ISWN strengthened, 
respectively. For the regions with a positive monsoon impact on inun-
dation, a unit increase in different monsoon indices could lead on 
average, to a 7.7%–14.2% increase in inundation frequency and 5.3%– 
8.1% increase in inundation depth, respectively. A unit increase in 
different monsoon indices could also cause a 1.0%–4.3% increase in 
inundation area. Moreover, a unit increase in different monsoon indices 
could make the inundation timing for area change by 2.8 days–3.8 days 
in three considered study regions, and made the inundation timing for 
depth on average change by 4.3 days–5.8 days. 

The WNPM and the ISWN dominated the inundation frequency in 

over 80% of the monsoon impact regions, while the ISM dominated the 
inundation timing for depth in over 58% of the monsoon impact regions. 
Over 63% of the regions with a monsoon impact on inundation depth 
were mainly regulated by the ISWN. Similar contributions of the WNPM 
and the ISWN were detected for inundation frequency. For inundation 
timing for depth, the ISM and WNPM shared similar contributions, but 
the monsoon with the most contribution to inundation timing for area 
was the ISM. Moreover, the ISWN contributed most to inundation depth 
and area. Further decomposition of the ISWN changed the results of the 
impacts on inundation frequency and depth as well as area, where the 
WNPM contributed more to the inundation and regulated more 
monsoon impact regions. 
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