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A B S T R A C T   

This study explores the sensitivity (termed scaling factor, SF) of daily and 30-minute precipitation extremes with 
several temperature variables, i.e., within-day surface air temperature (SAT) and dew point temperature (DPT), 
and antecedent SAT and DPT (corresponding to temperatures one day before a precipitation event, denoted as 
SAT-C and DPT-C) across China’s mainland. To this end, we used observed daily meteorological data from 
CN05.1 dataset and 30-minute precipitation data from the Integrated Multisatellite Retrievals for the Global 
Precipitation Measurement (IMERG). Our results reveal a mix of the positive and negative SFs of extreme daily 
precipitation with SAT across climatic zones, with peak-like structures developing at higher temperatures (be-
tween 17 and 24 ◦C). Although almost all the SFs turn to positive when SAT-C, DPT, and DPT-C are used, a peak 
structure is observed over some parts of each climate zone, especially in tropical regions. A comparison between 
the SFs of the full temperature range and the temperature range before peak structure reveals that a single scaling 
rate is not valid for the entire temperature range. Moreover, the SFs calculated based on the temperature range 
before the peak structure (for all four types of temperatures) follow better the Clausius-Clapeyron scaling (~7%/ 
◦C) than the SFs of the full temperature range except for the tropical region. Daily SFs based on IMERG data are 
mostly comparable to CN05.1 results, with discrepancies mainly in tropical and plateau climates (roughly 25% of 
the study area). However, IMERG’s 30-min precipitation extremes do not rise as much as expected (even decrease 
in some parts of the country) with increasing temperatures, contrary to common observations reported in pre-
vious studies. It suggests that another precipitation dataset is needed for scaling precipitation extremes at a 30- 
minute scale, at least for China’s mainland.   

1. Introduction 

Substantial evidence suggests that in the presence of sufficient at-
mospheric water vapor supply, heavier precipitation is likely to occur at 
higher temperatures (Hegerl et al., 2015; Schroeer and Kirchengast, 
2018; Tang, 2020). Indeed, based on the Clausius-Clapeyron (CC) rela-
tion, the atmosphere’s moisture-holding capacity increases by ~ 7% per 
◦C of warming (Held and Soden, 2006; Trenberth et al., 2003). As a 

result, the precipitation intensity is expected to increase as temperature 
rises (Berg et al., 2009; Gao et al., 2020). Understanding the relationship 
between extreme precipitation and temperature is a crucial step towards 
grasping how precipitation intensity will change under future global 
warming (Bui et al., 2019). Although the rate of changes in extreme 
precipitation with increasing temperature is not constant for different 
storm types and durations. However, having different scenarios about 
future changes in extreme precipitation could help us to better estimate 
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the design of hydrological extremes in a warming climate as discussed in 
Sharma et al. (2021). To address this issue, the sensitivity of precipita-
tion to temperature (the rate of increase in precipitation intensity with 
one degree of warming, termed scaling factor (SF)), has been analysed 
over many regions, such as Australia (Hardwick Jones et al., 2010; 
Herath et al., 2018; Wasko and Sharma, 2015), France (Drobinski et al., 
2016), India (Ali and Mishra, 2017), Japan (Fujibe, 2013; Utsumi et al., 
2011), Poland (Wibig and Piotrowski, 2018), the United States (Barbero 
et al., 2017; Mishra et al., 2012), and United Kingdom (Blenkinsop et al., 
2015; Chen and Li, 2016). 

However, there are two main barriers to the calculation and inter-
pretation of the SF. The first barrier in some regions, particularly at low 
latitudes, is negative SF values observed in the relationship between 
extreme daily and sub-daily precipitations and the surface air temper-
ature (SAT). There is a peak structure in the precipitation-temperature 
relation; that is, extreme precipitation increases at the low-medium 
range of SAT but decreases at high SAT. This reduces the robustness of 
using SF in estimating extreme daily and sub-daily precipitation changes 
in a warming climate (Sun et al., 2020; Zhang et al., 2017). The reasons 
for the occurrence of a peak structure in the daily or sub-daily precipi-
tation-temperature curve include limitations in moisture availability at 
high SAT (Hardwick Jones et al., 2010), the intra-seasonal variation of 
temperature (Berg et al., 2009), decreasing wet time fraction (Utsumi 
et al., 2011; Visser et al. 2021) and increasing short convective thun-
derstorms at high SAT (Westra et al., 2014), the cooling effect after 
precipitation (Ali and Mishra, 2017), and solar radiation blocking by 
heavy cloudiness (Escrig et al., 2013). 

To deal with the first barrier, a few studies calculated SFs separately 
for each season, storm duration, or storm type and found that their re-
sults are more consistent with the CC relation compared to when the 
whole data were considered together (e.g., Berg et al., 2009, 2013; 
Panthou et al., 2014). Some others suggested using dew point temper-
ature (DPT) instead of SAT as an alternative temperature variable (e.g., 
Ali & Mishra, 2017; Bui et al., 2019; Wasko et al., 2018). By far, the use 
of DPT provides closer results to our expectation from CC relation 
because DPT takes into account both temperature and moisture avail-
ability at the land surface, and SF based on DPT may not be as sensitive 
to storm duration (Wasko et al., 2018) and precipitation type (Bui et al., 
2019). On a global scale, Ali et al. (2018) and Zhang et al. (2019) 
showed that the results of DPT in scaling extreme daily precipitation are 
more consistent with the expected CC relation compared to SAT. Similar 
results were reported for scaling the extreme daily and sub-daily pre-
cipitation in India (Ali and Mishra, 2017), the Netherlands (Lenderink 
et al., 2011), France (Drobinski et al., 2016), western Europe (Lenderink 
and Van Meijgaard, 2010), Canada (Panthou et al., 2014), and Australia 
(Wasko et al., 2018). Although positive SF values were reported for the 
extreme precipitation-DPT relationship, some studies concluded that the 
peak structure still remains, e.g., over the Netherlands (Zhang et al., 
2017) and South Korea (Park and Min, 2017). More recently, Visser et al. 
(2020) showed that using the antecedent dry-bulb temperature (ante-
cedent temperature represents temperature before a precipitation event) 
can address cooling effects on scaling the peak hourly precipitation and 
result in positive SFs across a wide range of climatic regions. However, it 
is not clear whether applying antecedent temperature is useful in 
addressing the peak structure and then a single scaling rate can be 
appropriately applied at higher temperatures. 

The second barrier is the limitation of the data, practically at a sub- 
daily scale. In many parts of the world, we do not have enough pre-
cipitation data with a fine spatial–temporal resolution, e.g., sub-daily 
precipitation (Trenberth et al., 2017), to build a meaningful relation-
ship between precipitation extremes and temperatures. Lewis et al. 
(2019) tried to break through this barrier by developing a Global Sub- 
Daily Rainfall Dataset (GSDR). This quality-controlled dataset is 
becoming one of the primary sources of observed sub-daily precipitation 
data. So far, several studies have shown the usefulness of this dataset at 
an hourly scale (e.g., Ali et al., 2021; Barbero et al., 2019; Li et al., 

2020). However, this dataset does not cover the whole globe (it covers 
only some parts of the land) and is not accessible to the public due to the 
restriction policy. Fowler et al. (2021) stated that we should be aware of 
the strengths and weaknesses of using remotely sensed precipitation 
datasets as an alternative source to analyse the precipitation- 
temperature relationship. Although remotely sensed precipitation 
datasets often suffer low accuracy in comparison to gauge measure-
ments, they are a potential alternative source to analyse the perception- 
temperature scaling at a sub-daily scale due to their high spatiotemporal 
resolution, global spatial coverage, and considerable temporal span. 
Therefore, the evaluation of using satellite-based precipitation datasets 
in scaling precipitation with a temperature is a real need. In this regard, 
Wasko et al. (2016) presented a quasi-global assessment of the Tropical 
Rainfall Monitoring Mission (TRMM) 3B4 for scaling precipitation ex-
tremes at 3-hourly and daily time scale. They found that the perfor-
mance of TRMM is significantly varied in different regions and time 
scales; however, its data can be used in ungauged areas. Among different 
remotely sensed precipitation products, the Integrated Multisatellite 
Retrievals for the Global Precipitation Measurement (IMERG) as the 
most current satellite-based precipitation dataset might be a valuable 
option because 1) the IMERG provides global 30-minute precipitation 
intensity, 2) the data are accessible to all the researchers without any 
restrictions (Hosseini-Moghari and Tang, 2020). 

Three questions remain open for investigation: 1) What is the effect 
of antecedent temperature on the peak structure, 2) Is a single scaling 
rate valid across the temperature ranges? and 3) Can the remotely 
sensed precipitation data be a reliable alternative to in-situ precipita-
tion? To address the first question, we investigate extreme precipitation 
changes with within-day SAT and DPT as well as antecedent SAT/DPT. 
The antecedent SAT/DPT can be a better proxy than SAT/DPT, partic-
ularly over tropical regions. The antecedent temperature could poten-
tially reflect the actual temperature attributed to the precipitation event 
without being affected by the cooling impact of precipitation events and 
heavy cloud cover that accompanies these events. It should be noted that 
there are already several studies that investigated the relationship be-
tween daily and sub-daily precipitation extremes and temperatures over 
China, e.g., Gao et al. (2020), Wang et al. (2018), Guo et al. (2020), and 
Yong et al. (2021). However, in this study, our focus is on the spatial 
variation of the peak structure based on four types of temperature and 
the capability of the satellite precipitation product to capture the peak 
structure. To deal with the second question, we compare SFs calculated 
based on temperature range prior to peak structure with SFs for the full 
temperature range to see how SF rates change across the temperature 
ranges. We address the third question in two steps owing to limitations 
in the observed data. Firstly, we use the gauge-based dataset to quan-
titatively evaluate the IMERG’s performance in scaling daily precipita-
tion extremes with temperatures. Later, we use precipitation data from 
the IMERG for scaling 30-minute precipitation extremes with tempera-
tures over China’s mainland and compare the results with previous 
studies and the CC relation. The remainder of this paper is organized as 
follows: study area and data are described in Section 2. Sections 3, 4, and 
5 show the study’s method, results, and discussion, respectively. Finally, 
conclusions are drawn in Section 6. 

2. Study area and data 

We focus on scaling precipitation extremes with temperature vari-
ables in China’s mainland. With a population of ~ 1.4 billion people (Li 
et al., 2019), China is the world’s most populous country. Natural di-
sasters, especially floods and landslides driven by extreme rainfall 
events, cause high economic and social losses in this country (Han et al., 
2016). It is estimated that one degree of warming will result in more 
than US$130 billion flood loss per year throughout the nation (Jiang 
et al., 2020). Therefore, understanding the extreme precipitation 
changes with temperature in China is the key to manage these disasters 
under future global warming. We used the daily climate dataset CN05.1 
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provided by the National Climate Center of China Meteorological 
Administration (Wu and Gao, 2013). CN05.1 is a gridded 0.25

◦

×0.25
◦

dataset based on a dense network of 2416 in-situ weather stations pro-
vided by the Chinese Meteorological Administration (Yang et al., 2017). 
CN05.1 provides daily meteorological data for the period 1961–2017. 
We obtained the daily precipitation, SAT, and relative humidity from 
CN05.1. The DPT was calculated based on SAT and relative humidity 
using the Magnus-Tetens formula (Barenbrug, 1974). 

In addition to CN05.1 data, we utilized the IMERG version 6 final run 
precipitation product at daily and 30-minute timescales. The IMERG 
data with a 0.1

◦

×0.1
◦

spatial resolution are available from June 2000 
onwards over the entire globe (Caloiero et al., 2021). Additional infor-
mation about the IMERG product can be found in Huffman et al. (2015). 
We considered a common period to compare IMERG with CN05.1 at the 
daily scale, i.e., 2000 to 2017. At a 30-minute scale, storm events are 
identified using a two-hour separator, i.e., two precipitation events are 
considered independent if they are separated by two consecutive hours 
of zero precipitation (see Wasko and Sharma, 2015). Then, we consid-
ered the maximum 30-minute intensity in each independent strom to 
calculate SF at the 30-minute scale. Since the SF is usually dependent on 
climatic zones (Panthou et al., 2014), we considered the Köppen-Geiger 
climate classification (Köppen, 1936; Peel et al., 2007) and classified 
China’s mainland into five climatic zones (see Fig. S1, i.e., arid (north-
west), continental (northeast), plateau climate (Tibetan Plateau), humid 
(southeast), and tropical (south islands) according to the climate clas-
sification map from Beck et al. (2018). 

3. Method 

To calculate SF, we applied the binning technique with an equal 
number of events per bin because of its better performance over the 
approach with equal width temperature bins. Indeed, applying the 
binning approach with equal width may lead to fewer pairs in bins at the 
lower and upper ends and, in some cases, may result in empty bins, 
which would distort the extreme precipitation-temperature relationship 
(Herath et al., 2018). At daily scale, similar to previous studies in China 
(e.g., Yin et al., 2021; Yong et al., 2021), the precipitation events higher 
than 0.1 mm/day were grouped with corresponding daily temperatures 
to apply this technique for each pixel. We considered within-day SAT/ 
DPT and antecedent SAT/DPT (from here onwards referred to as SAT-C/ 
DPT-C) to offset the surface cooling effect during the rainfall. Then the 
precipitation-temperature pairs were sorted in ascending order by te-
mperature. The pairs were placed into 12 bins with an equal number of 
pairs per bin. If the bins for a given pixel contained less than 101 pairs, 
we omitted that pixel from the calculation, i.e., only those pixels with at 
least 1212 events (12 bins and more than 100 pairs in each bin) were 
considered in the calculation. We then estimated the 99th percentile 
daily precipitation (P99, to represent precipitation extreme) and mean 
SAT/DPT/SAT-C/DPT-C (T) for each bin. Finally, we fitted the following 
linear regression (Ali et al., 2018; Ali and Mishra, 2017; Bui et al., 2019) 
to the P99 and mean SAT/DPT/ SAT-C/DPT-C data for each pixel: 

ln(P99) = β1T + β0 (1) 

where β1 and β0 are slope and intercept of the linear regression, 
respectively. Eventually, the SF was estimated for each pixel by (Bui 
et al., 2019): 

SF(%/
◦

C) = (eβ1 − 1) × 100 (2) 

SF was also calculated based on the median of SAT/DPT/SAT-C/ 
DPT-C data in the bins with equal width. The results were compara-
ble. Therefore, we only present the results based on mean daily SAT/ 
DPT/ SAT-C/DPT-C. 

A similar process was applied for the 30-minute scale. Recall that, 
unlike the daily scale in which we considered all precipitation values 
larger than 0.1 mm/day, in calculating scaling factor at a 30-minute 

scale, we use the maximum 30-minute intensity of each independent 
event with intensity larger than 0.1 mm/hr. In this way, the events with 
a long duration do not have more weight on the scaling rate than other 
events. 

To identify a peak structure in the relationship between precipitation 
and temperature, we calculated the difference between the precipitation 
intensity in the bin with the highest temperature and the maximum 
precipitation intensity of all the bins. A zero difference indicates no peak 
structure. Therefore, we considered the following two equations to 
examine the peak structure in the precipitation-temperature relation-
ship: 

ΔP(%) =
P99m − P99h

P99m
× 100 (3)  

ΔT(◦C) = TP99m − TP99h (4) 

where ΔP indicates the relative difference between the maximum of 
the 99th percentile of precipitation and the 99th percentile of precipi-
tation in the bin with the highest temperature, ΔT (Δ SAT, Δ DPT, Δ 
SAT-C or Δ DPT-C) is the difference between the 99th percentile tem-
perature in the bin corresponding to maximum precipitation intensity 
and 99th percentile temperature in the bin with the highest tempera-
ture, P99m and P99h represent maximum of the 99th percentile precip-
itation of all the bins and 99th percentile precipitation in the bin with 
the highest temperature, respectively; TP99mand TP99h are the tempera-
tures corresponding to the P99m andP99h , respectively. 

As discussed in Visser et al. (2021), the binning technique provides a 
unique opportunity to analyze precipitation changes within a given 
temperature range. To take advantage of this feature, we calculated SF 
for the entire temperature range and the temperature range before the 
peak structure to examine peak structure impact on SF rates. To avoid 
calculating SF based on a limited number of data, we calculated SFs only 
for pixels with more than 1212 events (12 bins and more than 100 pairs 
in each bin) before TP99m . 

4. Results 

4.1. Scaling observed daily precipitation extremes with temperatures 

Fig. 1 shows the spatial distribution of SFs based on SAT, DPT, SAT- 
C, and DPT-C in different climate zones of China’s mainland. With 
respect to the t-test at a confidence level of 95 %, a statistically signifi-
cant relationship between precipitation and SAT is found in 53.7 % of 
pixels. This value reaches 98.5, 93.7, and 92.8 % when DPT, SAT-C, and 
DPT-C are used. A negative SF based on SAT is found in regions of all 
climate zones except the continental climate zone (Fig. 1a). Overall, a 
negative SF between precipitation and SAT is present in 18.2 % of areas, 
concentrated in humid and tropical, whereas SF values based on DPT are 
always positive (Fig. 1b). Using SAT-C and DPT-C, the SFs are positive 
near everywhere over all zones; however, the SF values based on DPT 
are higher than the others. The biggest difference can be observed in 
tropical regions where SF-SAT varies between − 5.6 and + 5.1 %/◦C, 
while an above CC-like scaling is obtained for all pixels based on DPT, 
SAT-C, and DPT-C. In more than half of the study area, SF values based 
on DPT are not lower than CC. Conversely, based on SAT, SAT-C, and 
DPT-C, more than 81, 69, and 80 % of areas have a SF value less than CC, 
respectively. Using SAT-C and DPT-C lead to lower SF values than using 
DPT; however, the SF values are always positive based on SAT-C and 
DPT-C. 

Fig. 2 illustrates the density scatter plots of extreme daily precipi-
tation versus different temperatures for each climate zone. A regression 
line was fitted between the 99th percentiles of precipitations and cor-
responding temperatures. From Fig. 2, a peak structure is observed in 
the relationship between SAT and precipitation, except for the plateau 
climate. This hook-shape relationship expresses a changing scaling from 
positive to negative, occurs in SAT ranges from 17 to 24 ◦C across China. 
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The use of DPT leads to an absence of the peak structure over the arid 
and continental areas, while the peak remains with a smoother slope 
over the humid and tropical regions. As a result, a high positive SF value 
(see Fig. 1) refers only to the curve’s rising limb and is not necessarily 
linked to an absence of peak structure. When SAT-C is used, the results 
are almost similar to DPT; however, SAT-C leads to an almost flat curve 
at higher temperatures in the humid and tropical regions. Generally, 
there is no clear peak in the relationship between precipitation and DPT- 
C, suggesting that DPT-C results are more consistent with our expecta-
tion from CC relation. It should be noted that Fig. 2 shows a general 
behavior over each climate zone which means that it is possible for some 
pixels not to contribute to the tails of the scatter plots due to their limited 
temperature range. To deal with this issue, a pixel-by-pixel analysis is 
done below. 

Fig. 3 shows box plots of ΔP and ΔT (see equations (3) and (4)) for 
five major climate zones. The median of ΔP based on SAT varies from 39 
% (in the plateau region) to 87 % (in the tropical region). Thus, the 
extreme precipitation of the hottest bin in tropical region is much lower 
than the maximum extreme precipitation. Similarly, ΔT shows large 
variability with the median between − 9.3 ◦C (in arid region) and 
− 4.3 ◦C (in tropical region). Results indicate that the use of other tem-
perature variables reduces ΔP and ΔT. In more than 70, 67, 50 % of 
areas of arid, continental, and plateau regions, ΔP and ΔT based on DPT 
are equal to zero. In humid and tropical regions, ΔP and ΔT are never 
equal to zero. SAT-C results are less consistent with the CC scaling than 
DPT in arid, continental, and plateau areas, whereas the opposite is true 

in humid and tropical areas. Results based on DPT-C show smaller ΔP or 
ΔT in humid and tropical regions (with a median of ΔP equal to 10 % 
and 18 % and a median of ΔT equal to − 2.4 ◦C and − 1.5 ◦C in humid and 
tropical regions, respectively), suggesting that SFs based on DPT-C 
follow a better CC relation in these regions. The spatial pattern of ΔP 
and ΔT are presented in Figs. S2 and S3. 

Fig. 4 illustrates box plots of SFs calculated based on the whole 
temperature range and the temperature range before the peak structure 
in five major climate zones (see Method section). Comparing two panels 
of Fig. 4 reveals that SFs before the peak point are stronger than SFs of 
full temperature range, particularly when SAT is used. SFs based on SAT 
are equal and bigger than SFs of other temperatures when the temper-
ature range is limited to before the peak structure. It means that a single 
SF not only can be quite different based on different temperatures 
(Fig. 1), but also it varies significantly in different temperature ranges 
based on a given type of temperature (Fig. 4). The medians of the SF 
values of full temperature range based on SAT (DPT, SAT-C, DPT-C) in 
the arid, continental, plateau, humid, and tropical climate zones are 1.9 
(6.3, 3.9, 4.1), 4.8 (6.4, 5.4, 4.9), 6.6 (8.7, 5.5, 3.9), 1.3 (5.2, 5.1, 4.9), 
and 0.6 (12.2, 11.3, 12.0) %/◦C, respectively. While the medians of SF 
values reach to 7.1 (7.4, 4.4, 4.7), 6.6 (6.7, 5.5, 4.9), 9.9 (9.0, 7.4, 5.1), 
6.2 (6.2, 5.6, 5.3), and 22.0 (16.4, 17.1, 13.0) for the arid, continental, 
plateau, humid, and tropical climate zones, respectively; for tempera-
tures range before the peak structure. It shows that SFs before the peak 
structure are more consistent with the expected CC relation in the arid, 
continental, plateau, and humid regions than SFs computed based on the 

Fig. 1. Spatial distribution of SFs for 99th percentile of daily precipitation of CN05.1 in relation with (a) SAT, (b) DPT, (c) SAT-C, and (d) DPT-C over China’s 
mainland. The polygons outlined by black lines represent five major climate zones in China’s mainland. The gray diagonal lines represent the regions without a 
statistically significant relationship between extreme precipitation and SAT/DPT/SAT-C/DPT-C at the 95% confidence level based on the t-test. SF greater than 14 
%/◦C was set as 14 %/◦C. 
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full temperature range. 

4.2. Scaling daily precipitation extremes with temperatures using the 
IMERG data 

Fig. 5 displays the box plots of SFs in different climate zones obtained 
from the observed and IMERG daily precipitation. Recall that the SFs in 
this section were computed for 2000–2017 (the common period in the 
observed and IMERG datasets). Generally, IMERG can reflect the im-
pacts of different temperatures on SFs. IMERG based SF values are close 
to CN05.1 results except over the plateau and tropical areas. Larger SF 
values over plateau (generally above CC-like scaling) and lower SF 
values in tropical region (generally below CC-like scaling) are found 
from IMERG results compared to observed ones. A comparison between 
the results of different precipitation datasets and different temperatures 

reveals SFs are more sensitive to the temperature variable than precip-
itation datasets at the daily scale. In other words, accurate sampling has 
a great impact on SF rates. For example, in the arid region, the difference 
between average SFs obtained from different temperatures varies from 
0.04 (a difference when SAT-C and DPT-C are used) to 4.81 (a difference 
when SAT and DPT are applied); while the difference between CN05.1 
and IMERG varies from 0.09 (when DPT-C is applied) to 2.55 (when SAT 
is used). 

The spatial distribution of the difference between calculated SFs 
based on IMERG and CN05.1 using different temperature variables is 
shown in Fig. 6. It should be noted that in some pixels, there were not a 
sufficient number of precipitation events to calculate SF during 
2000–2017 (less than 1212 events, see Method section). Indeed, about 
50 % of the arid region and 16 % of the plateau region were excluded 
from the calculations. From Fig. 6, the difference between IMERG and 

Fig. 2. The relationship between 99th percentile of daily precipitation and (a) SAT, (b) DPT, (c) SAT-C, and (d) DPT-C in (1) arid, (2) continental, (3) plateau, (4) 
humid, and (5) tropical climate zones of China. The solid black lines represent the 99th percentile lines fitted between extreme daily precipitation and corresponding 
SAT/DPT/SAT-C/DPT-C. The dashed black lines indicate CC like scaling of 6.8%/◦C. Shaded colors indicate the probability density of the data based on a Gaussian 
kernel estimator. The y-axis has a logarithmic scale. 
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Fig. 3. Box plots of (a) ΔP and (b) ΔT for five 
major climate zones of China’s mainland. ΔP in-
dicates the relative difference between the 
maximum extreme precipitation within the bins 
and extreme precipitation in the bin with the 
highest temperature. ΔT shows the difference be-
tween temperatures in the bin with maximum 
extreme precipitation and the hottest bin. The 
bottom, middle, and top lines of each box are the 
25th, 50th and 75th percentiles of the difference, 
respectively, and whiskers are the 5th and 95th 
percentiles of the difference, respectively.   

Fig. 4. SFs for (a) the entire temperature range 
and (b) the temperature range prior to peak 
structure in five major climate zones of China’s 
mainland. The bottom, middle, and top lines of 
each box are the 25th, 50th and 75th percentiles 
of SF, respectively, and whiskers are the 5th and 
95th percentiles of SF. The dashed black and red 
lines indicate CC and super CC like scaling of 6.8 
and 13.6 %/◦C, respectively (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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CN05.1 results is close to zero over a large part of China’s mainland, 
particularly when DPT or DPT-C are used. The best results were found 
over continental and arid areas. The poorer performance of IMERG over 
the plateau and south parts compared to other regions can be explained 
by the complexity of precipitation estimation over these areas. 

To compare extreme precipitation-temperature curves based on 
observed and IMERG datasets, a regression line was fitted between the 
99th percentiles of daily precipitations and corresponding temperatures 
(the density scatter plots of IMERG extreme daily precipitation versus 
different temperatures are placed in the supplementary i.e., Fig. S4. 
Fig. 7 indicates that in many areas, the curves from CN05.1 and IMERG 
show similar patterns. In general, IMERG performs better at the medium 
temperature range than the tails of the curve. The main differences come 
from the amount of precipitation; somehow, the curves related to 
IMERG are generally located above CN05.1 ones. It means that the 
IMERG estimates more precipitation than is reported by observations. 

Interestingly, IMERG can represent the impact of different temper-
atures on the peak structure well and, in most cases, shows a quite 
similar behavior compared to CN05.1. For example, the peak structure 
occurs around 23 ◦C in the tropical area based on both CN05.1 and 
IMERG data sets when SAT and DPT are used. 

4.3. Scaling 30-minute precipitation extremes with temperatures based on 
IMERG 

Fig. 8 shows the spatial pattern of SFs based on different tempera-
tures at the 30-minute scale along with the box-plot of SFs over different 
climate zones. Unlike the daily scale, the areas with an insignificant 
relationship between the 30-minute extreme precipitation and temper-
ature are considerable when DPT, SAT-C, and DPT-C are used. With 
respect to the t-test, there is no significant relationship between pre-
cipitation and SAT (DPT, SAT-C, DPT-C) in 39.5% (33.5%, 38%, 33%) 
areas of China’s mainland, mainly over arid and plateau regions. 
Moreover, SF values are smaller than the daily scale ones, and the 

influence of different temperatures is negligible compared to its influ-
ence on the daily scale (compare Figs. 1 and 8). The largest impact of 
different temperatures can be seen over tropical lands, where the mean 
of SF values calculated based on DPT and DPT-C are at least twice larger 
than the values obtained from SAT and SAT-C. The median of SF values 
varies between [0.63, 1.35], [3.44, 3.50], [3.34, 4.21], [3.22, 3.78], 
[− 8.81, − 2.57] based on different temperatures in arid, continental, 
plateau, humid, and tropical climate zones, respectively. 

The negative SFs over tropical land based on all temperatures and a 
below CC scaling in other parts (except some regions in central and 
southwest of China’s mainland) reveal that the extreme 30-minute 
precipitation from the IMERG data does not follow the expectations 
based on the CC relationship. 

For an in-depth analysis, we plotted the extreme 30-minute pre-
cipitations against temperatures in Fig. 9. This figure illustrates the 
scatter plots of extreme 30-minute precipitation versus different tem-
peratures for each climate zone. There is no relationship between pre-
cipitation and temperature in the arid (first row) and plateau (third row) 
regions, resulting in regression lines approximately parallel to the hor-
izontal axis. However, an upward rate with a lower slope than the CC 
rate is observed without any peak structure in continental and humid 
regions. It indicates that it is more likely that in these areas, a selected 
temperature variable may have less impact on scaling short-duration 
events compared to long-duration events. Unlike other climate zones 
over tropical region, the extreme precipitation-temperature relation is 
sensitive to a temperature variable; however, none of these temperature 
variables support a positive scaling of precipitation extremes over this 
region. Less impact of temperature on SF values reveals that the pre-
cipitation rate plays a more critical role in determining the scaling than 
the temperature variable at the 30-minute scale. 

Fig. 5. Comparison between SFs for 99th percentile of daily precipitation of CN05.1 (grey) and IMERG (yellow) using SAT, DPT, SAT-C, and DPT-C for in (a) arid, (b) 
continental, (c) plateau, (d) humid, and (e) tropical climate zones of China’s mainland. The bottom, middle, and top lines of each box are the 25th, 50th and 75th 
percentiles of SF, respectively, and whiskers are the 5th and 95th percentiles of SF. The dashed black and red lines indicate CC and super CC like scaling of 6.8 and 
13.6 %/◦C, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Discussion 

5.1. Impact of different temperatures on scaling factor 

According to the analysis above, our results at daily scale indicated 
that SF based on DTP with a more homogeneous spatial distribution is 
always positive across China’s mainland, whereas the opposite is true for 
SAT (see Fig. 1). Negative SF values based on SAT have been widely 
reported in previous studies (e.g., Ali et al., 2018; Herath et al., 2018; 
Utsumi et al., 2011; Wang et al., 2017). In line with previous results 
reported for tropical regions of Australia (Bui et al., 2019; Wasko et al., 
2018), a mixed negative and positive relationship between SAT and 
extreme daily precipitation were also found in tropical regions of 
China’s mainland, while all SF values based on DPT are positive. Wasko 
et al. (2018) and Ali et al. (2018) also reported that SF values based on 
DPT are more uniform in space than those based on SAT. It is worth 
mentioning that despite the positive SF values in tropical area based on 
DPT, SAT-C, and DPT-C (see Fig. 1), the peak structure remains in some 
pixels (see Fig. 3). Indeed, during the heaviest rainfall in the tropical 
area, convective cloud cover and direct surface cooling by rainfall 
should reduce surface temperatures. At the same time, tropical storms 
and typhoons mix the upper overheated sea layer with colder waters of 
the thermocline, making the SAT lower than a few days before. All 
together, these processes promote the peak structure in the temperature- 
extreme rainfall relationship and “bend” linear scale factors. 

In agreement with Visser et al. (2020), our results confirm that using 
temperature before the precipitation events, the SFs become positive 
based on SAT-C and DPT-C. Indeed, the cooling effect transfers heavy 
precipitation to the bins with lower temperatures (Bao et al., 2017). 

Therefore, SAT-C and DPT-C may help better pairing precipitation and 
temperature resulted in heavy precipitations staying at the correct bins. 
However, at least over many regions of China’s mainland, moisture 
limitation is the primary reason that controls heavy precipitation at 
higher temperatures, not the cooling effect and accompanying synoptic 
systems (Gao et al., 2020). It means that DPT and DPT-C are a potentially 
better proxy than SAT-C (and SAT) for scaling precipitation extremes. 
More specifically, we found that SFs from DPT are more consistent with 
the expected CC relation in arid, continental, and plateau regions, while 
DPT-C results in humid and tropical regions. It suggests that for scaling 
extreme daily precipitation over China’s mainland, the relative humid-
ity should be considered in all climate zones, while the cooling effect 
may not critical in all regions. This can be explained by the fact that 
there would be more precipitation time in humid and tropical regions, 
and these precipitation events absorb considerable amounts of latent 
heat through precipitation evaporation. This finding is in line with Gao 
et al. (2020), who assessed the relationship between the extreme pre-
cipitations and within-day mean atmospheric temperature and ante-
cedent maximum atmospheric temperature over China’s mainland. 

Our results indicate that a peak structure is present in the relation-
ship between SAT and the extreme daily precipitation, with the SAT 
ranging from 17 to 24 ◦C across China’s mainland. It suggests decreasing 
(daily) precipitation intensity with increasing temperatures (see Fig. 2). 
A similar temperature range was also reported over ten river basins in 
China by Wang et al. (2018). However, different breakpoints were re-
ported for SAT-precipitation relationship over different regions, e.g., 
~24 ◦C in South Korea (Park and Min, 2017), ~22 ◦C in the United 
Kingdom (Chen and Li, 2016), 20–26 ◦C in Australia (Hardwick Jones 
et al., 2010; Wasko et al., 2018), ~20 ◦C in the French Mediterranean 

Fig. 6. The difference between calculated SFs for 99th percentile of daily precipitation of IMERG and CN05.1 datasets using (a) SAT, (b) DPT, (c) SAT-C, and (d) DPT- 
C over China’s mainland. The polygons outlined by black lines represent five major climate zones in China’s mainland. Positive values indicating that SFs’ IMERG in 
larger than CN05.1 whereas the opposite is true for negative values. The gray areas represent the regions where SFs were not calculated due to lack of data. The 
IMERG results were upscaled to 0.25◦×0.25◦ spatial resolution to match the CN05.1 resolution. 
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area (Drobinski et al., 2016), ~18 ◦C in Romania (Busuioc et al., 2017). 
In many regions, precipitation is controlled by limited humidity at high 
temperatures (Berg et al., 2009; Herath et al., 2018). This limitation in 
relative humidity is more likely due to the moisture transport reduction 
from oceans to lands at high temperatures due to high humidity and a 
large saturation deficit over land (Gao et al., 2020). This implies that for 
temperature-precipitation relationship analysis, both moisture-holding 
capacity and available moisture should be considered (Hardwick 
Jones et al., 2010). Hence it could be expected that the peak structure 
may disappear when DPT/DPT-C is considered as the temperature in-
dicator which takes into account relative humidity. However, our 
analysis cannot justify this expectation in all parts of China’s mainland 
(see Fig. 3). It means that other factors than humidity play an important 
role e.g., rainfall duration (see Visser et al. (2021)). The peak structure 
in the relationship between extreme precipitation and DPT was also 
reported in the Netherlands (Zhang et al., 2017) and South Korea (Park 
and Min, 2017). Another issue that needs to be recalled is that SAT and 

DPT represent surface temperature attributes, while both relative hu-
midity and temperature significantly change with elevation i.e., the 
extreme precipitation largely associated with precipitable water within 
the air column (Roderick et al., 2020). Therefore, changes in rate of 
precipitation intensity with increasing temperature may not necessarily 
follow the CC relation. However, we showed the SFs calculated based on 
temperature range before the peak structure follow the CC scaling much 
better than the SFs obtained from a full temperature range (see Fig. 4). 
Indeed, it suggests that a single scaling rate could not be applied to 
interpret change in the daily extreme precipitation for all temperature 
range. 

Although using DPT and DPT-C eliminates peak-like structures in 
some parts of China’s mainland, remaining of peak structures in other 
parts induce uncertainty in estimating extreme precipitation under 
future global warming. The occurrence of peak structures contrasts with 
modeled precipitation extremes predictions and long-term trend anal-
ysis of annual maximum daily precipitation (Bao et al., 2017; Sun et al., 

Fig. 7. The relationship between 99th percentile of daily precipitation of CN05.1 (black lines)/IMERG (blue lines) and (a) SAT, (b) DPT, (c) SAT-C, and (d) DPT-C in 
(1) arid, (2) continental, (3) plateau, (4) humid, and (5) tropical climate zones of China’s mainland. The black dashed lines indicate CC like scaling of 6.8%/◦C. The y- 
axis has a logarithmic scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2020). Indeed, the binning curves for current and future warmer con-
ditions are similar, except that the peak occurs at a higher temperature 
with more intense precipitation in the future (Zhang et al., 2017). 
Therefore, the binning scaling may not be reliable for use in projecting 
the impact of future warming on extreme precipitation. Under this 
circumstance, a trend scaling (Zhang et al., 2017) may provide a better 

prediction, as Sun et al. (2020) discussed in detail. 
Other studies indicated that SF based on DPT may not be as sensitive 

to storm duration (Wasko et al., 2018) and the type of precipitation 
event (Bui et al., 2019). However, the shape of the precipitation- 
temperature curve may be affected by the storm duration and precipi-
tation type due to different dynamic processes. In fact, on a daily scale, 

Fig. 8. Spatial distribution of SFs of 99th percentile of IMERG’s 30-minute precipitations in relation with (a) SAT, (b) DPT, (c) SAT-C, and (d) DPT-C over China’s 
mainland. The polygons outlined by black lines represent five major climate zones in China’s mainland. The gray diagonal lines represent the regions without a 
statistically significant relationship between extreme precipitation and SAT/DPT/SAT-C/DPT-C at the 95% confidence level based on the t-test. SF greater than 14 
%/◦C and less than − 7 %/◦C was set as 14 %/◦C and − 7%/◦C, respectively. (e) Box plots show the SFs for five major climate zones of China’s mainland. The bottom, 
middle, and top lines of each box are the 25th, 50th and 75th percentiles of SF, respectively, and whiskers are the 5th and 95th percentiles of SF. The dashed black 
and red lines indicate CC and super CC like scaling of 6.8 and 13.6 %/◦C, respectively. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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all precipitation events are considered regardless of their durations. 
Because duration of a single rainfall event decreases with increasing 
temperature (Gao et al., 2018), SF on a daily scale may not be valid in a 
warmer climate. In this regard, Visser et al. (2021) argued that the 
negative SFs over the Australia are due to decrease in the duration of the 
precipitation event at higher temperatures, and not to the decrease in 
the precipitation rate. Moreover, combining stratiform, convective, and 
mixed rainfall types may affect the scaling rate (Molnar et al., 2015) as a 
stronger increase in convective extremes rainfall was detected compared 
to the stratiform type rainfall (Berg et al., 2013). Due to these un-
certainties, the relationship between precipitation extremes and tem-
perature cannot be fully understood using the binning method (Zhang 
et al., 2017). 

In addition, increasing number of short convective thunderstorms at 

a high SAT (Westra et al., 2014) is the another reason for the extreme 
daily precipitation-temperature curve deviating from a monotonic 
curve. precipitation-temperature relation only explains the role of 
temperature in shaping precipitation through thermodynamic pro-
cesses. Temperatures alone could not fully explain precipitation change. 
Estimating extreme precipitation requires both thermodynamic and 
dynamic processes (Jiang et al., 2020; Muller and Takayabu, 2020). 
However, the difference between the SF values based on different tem-
peratures indicates that although there are some other influencing fac-
tors on precipitation extremes, a correct precipitation-temperatures 
sampling is essential in scaling precipitation extremes. 

Fig. 9. The relationship between 99th percentile of IMERG’s 30-minute precipitations and (a) SAT, (b) DPT, (c) SAT-C, and (d) DPT-C in (1) arid, (2) continental, (3) 
plateau, (4) humid, and (5) tropical climate zones of China’s mainland. The solid black lines represent the 99th percentile lines fitted between extreme half-hourly 
precipitation and corresponding SAT/DPT/SAT-C/DPT-C. The dashed lines indicate CC like scaling of 6.8%/◦C. Shaded colors indicate the probability density of the 
data based on a Gaussian kernel estimator. The y-axis has a logarithmic scale. 
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5.2. The performance of using IMERG in representing the extreme 
precipitation-temperature relationship 

Our results indicated that IMERG estimates a larger amount of 
extreme daily precipitation than CN05.1 (see Fig. 7). This indicates a 
positive bias in IMERG data over China’s mainland in all intensity 
classes of daily precipitation. This finding is consistent with the primary 
assessment of IMERG over China’s mainland (e.g., Chen and Li, 2016; 
Tang et al., 2020). We found that the IMERG data can provide useful 
information about the effects of different temperatures on SF at a daily 
scale (see Fig. 5), while their effects are less notable on a 30-minute scale 
(see Fig. 8). We may have no (or smoother) peak structure at a sub- 
hourly time scale even when SAT is used, as Utsumi et al. (2011) re-
ported, resulting in a closer SF value in different temperatures. In other 
words, the merits of accurate sampling on a coarser time scale are more 
evident (e.g., daily scale). However, due to some discrepancies with 
previous researches, the results at the 30-minute scale remain doubt-
able. Visser et al. (2020) showed that the difference between SFs 
calculated based on a dry-bulb and an antecedent dry-bulb temperature 
is significant at a sub-hourly scale. Moreover, our results show SF values 
at the 30-minute scale are smaller than ones at the daily scale. This is not 
consistent with previous findings that reported a higher SF value for a 
sub-daily scale compared to the daily ones (e.g., Ali et al., 2021; Lend-
erink et al., 2021; Lenderink and Van Meijgaard, 2008). 

The root causes of the poorer performance of scaling precipitation 
extremes by using IMERG data at the 30-minute scale compared to the 
daily scale can be:  

• The satellite sensors and IMERG algorithm have difficulty estimating 
the heavy rainfall (Fang et al., 2019; Mitra et al., 2018), i.e., it is 
more likely that the performance of IMERG is worse in estimating 
maximum 30-minute intensity;  

• The IMERG data are adjusted at a monthly scale (Hosseini-Moghari 
and Tang, 2020); therefore, precipitation at the daily scale might be 
close to the observation, while the intensity of individual precipita-
tion events with a high temporal resolution would not be adjusted 
well;  

• The short precipitation events are hardly captured by satellites due to 
their limited numbers of overpasses and uneven sampling of the 
satellites (Gebregiorgis and Hossain, 2013; Tian et al., 2009). 

It should be noted that it is better to compare IMERG 30-minute 
results with observed data. However, this paper does not make a 
quantitative assessment of IMERG at a 30-minute scale due to data 
availability issues. Therefore, at a 30-minute scale, we compared our 
results with previous studies and the CC relation. 

The different temperatures have more impact on the extreme 30- 
minute precipitation in the tropical area, where these extremes are 
frequently associated with typhoons (see Fig. 9). At the same time, the 
worst performance of IMERG was reported exactly over this region, 
where SFs are negative based on all temperature variables (see Fig. 8). 
The reason for this mishap can be traced to heavy rainfall associated 
with tropical depressions, storms, and hurricanes (typhoons), as proper 
estimation of such rainfall events are difficult by IMERG (Omranian 
et al., 2018; Yu et al., 2021). It is worth mentioning that the poor per-
formance of scaling precipitation extreme by using IMERG data at the 
30-minute scale can also be related to the temperature data as we used 
daily temperature data for scaling the 30-minute precipitation. 

6. Conclusions 

In this study, the relationship between extreme daily/30-minute 
precipitation and temperature was explored throughout five climate 
zones of China’s mainland. To this end, meteorological data from 
CN05.1 at the daily scale and precipitation data from IMERG datasets at 
the 30-minute scale were considered. Based on a comprehensive analysis 

of grid-level climatic data, our results showed that: 
A stronger relationship is found between extreme precipitation and 

daily DPT than SAT over China’s mainland. There is a significant linear 
relationship between extreme precipitation and DPT in 98.5% of areas, 
whereas this value is 53.7% based on SAT. In ~ 62% areas, SF based on 
DPT is close to or excess of CC like scaling, i.e., 6 %/◦C, while only ~ 
18% areas have SF based on SAT over 6 %/◦C. Moreover, SF based on 
DPT is always positive, whereas, in ~ 18% of areas, SF based on SAT is 
negative. The most substantial difference in SF values based on SAT and 
DPT was found in tropical regions where the median of the sensitivity of 
extreme precipitations to SAT and DPT is close to zero and 12.2 %/◦C, 
respectively. 

The cooling effect is a reason for negative SF based on SAT. If the 
antecedent SAT is used, all SF values turn to positive across all climatic 
zones. However, the SF based on SAT-C is lower than DPT. Our results 
based on DPT in arid, continental, and plateau lands and DPT-C in 
humid and tropical regions are more consistent with the expected CC 
relation compared to SAT-C because the peak structure in the precipi-
tation and temperature relationship based on DPT and DPT-C is less 
evident. The cooling effect after precipitation and solar radiation 
blocking by heavy cloudiness in humid and tropical regions (in our 
study, these are the tropical islands in South China Sea surrounded by 
permanently warm waters and affected by frequent tropical storms/ty-
phoons) is likely the reason for following better the expected CC relation 
by DPT-C in comparison to DPT in these regions. 

SF rates calculated based on the temperature range before the peak 
are close to CC scaling based on all temperatures and in all regions 
(except tropical area). It suggests that the results of all temperatures are 
almost comparable in a limited range of temperatures. However, the 
variations of the extreme daily precipitation at higher temperatures 
based on different temperatures lead to a considerable disagreement 
between their SFs when the full temperature range is considered. 
Therefore, a single scaling rate cannot be considered for entire tem-
perature range. 

When analysing the use of within-day and antecedent temperatures 
for deriving SFs and the peak structure at the daily scale, IMERG shows 
almost similar results to CN05.1 in most cases except for tropical and 
plateau regions. However, extreme precipitations from IMERG at a 30- 
minute scale show no relationship with temperature in many parts of 
China’s mainland. Moreover, SFs values based on IMERG at the 30-min-
ute scale are smaller than the daily scale and are not sensitive to 
different temperature variables used. Therefore, our analysis of the 
IMERG data did not allow us linking precipitation extremes at the 30- 
minute scale with temperature over China’s mainland. 

With all improvements, the peak structure persists in precipitation- 
temperature relation at high temperatures. Therefore, for a more pre-
cise precipitation prediction, the consideration of both thermodynamic 
and dynamic processes is essential. 

It should be noted that extrapolating the extreme precipitation under 
global warming using the historical relationship between extreme pre-
cipitation and temperature remains a challenge (Zhang et al., 2017). In 
addition, relying solely on temperature is not a perfect approach for 
estimating extreme precipitations. Therefore, for a better understanding 
of extreme precipitation changes, other factors like moisture source, 
changing atmospheric circulation patterns, an d oceanic impact should 
be included in the calculations (Ali et al., 2018; Hardwick Jones et al., 
2010). Indeed, a careful combination of model simulations and empir-
ical approach based on observations is the best way forward to incor-
porate changes in extreme precipitation in decision makings such as 
estimating design hydrologic extremes (Sharma et al., 2021). Finally, it 
should be mentioned that the station network in western China’s 
mountainous terrain is sparse, so the data in this area may not be 
considered as a reliable source for IMERG evaluations at fine spatial and 
temporal resolutions. Therefore, it is suggested to conduct a similar 
analysis at a sub-daily or sub-hourly scale when and where more 
observational data will be available. 
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