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Abstract

The interaction between surface water and groundwater is an important aspect of

hydrological processes. Despite its importance, groundwater is not well represented

in many land surface models. In this study, a groundwater module with consideration

of surface water and groundwater dynamic interactions is incorporated into the dis-

tributed biosphere hydrological (DBH) model in the upstream of the Yellow River

basin, China. Two numerical experiments are conducted using the DBH model: one

with groundwater module active, namely, DBH_GW and the other without, namely,

DBH_NGW. Simulations by two experiments are compared with observed river dis-

charge and terrestrial water storage (TWS) variation from the Gravity Recovery and

Climate Experiment (GRACE). The results show that river discharge during the low

flow season that is underestimated in the DBH_NGW has been improved by incorpo-

rating the groundwater scheme. As for theTWS, simulation in DBH_GW shows better

agreement with GRACE data in terms of interannual and intraseasonal variations and

annual changing trend. Furthermore, compared with DBH_GW, TWS simulated in

DBH_NGW shows smaller decreases during autumn and smaller increases in spring.

These results suggest that consideration of groundwater dynamics enables a more

reasonable representation of TWS change by increasing TWS amplitudes and signals

and as a consequence, improves river discharge simulation in the low flow seasons

when groundwater is a major component in runoff. Additionally, incorporation of

groundwater module also leads to wetter soil moisture and higher evapotranspiration,

especially in the wet seasons.
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1 | INTRODUCTION

Groundwater interacts with soil moisture under gravity and capillary

forces and exchanges with water in river channels under hydraulic

head gradient. These interactions are key land surface processes and

have significant impacts on the land surface energy and water balance

(Maxwell & Miller, 2005; Niu, Yang, Dickinson, Gulden, & Su, 2007;
wileyonlinelibrary.co
Wada et al., 2010). Groundwater dynamics are considerable factor

for runoff generation and further influence the volumes and variations

of streamflow in river channels, especially in temperate zones where

subsurface flow or baseflow from deep soil moisture and groundwater

accounts for a large proportion of total runoff (Cherkauer &

Lettenmaier, 1999; Lam, Karssenberg, van den Hurk, & Bierkens,

2011). Furthermore, the interaction between groundwater and surface
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water is likely to affect the soil moisture in unsaturated zones, thus

further affect evapotranspiration (ET) (Fan, Miguez‐Macho, Weaver,

Walko, & Robock, 2007; Liang, Xie, & Huang, 2003; Lin, Lo, & Chou,

2016; Miguez‐Macho & Fan, 2012 a,b).

Over the past few decades, land surface models (LSMs), which

are applied to quantitatively represent the fluxes of radiation, water

vapour, heat, and momentum across the land and atmosphere inter-

face, have evolved from the simple, unrealistic schemes into reason-

able representations of the soil‐vegetation‐atmosphere system

(Sellers, 1986; Sellers et al., 1996; Tang & Oki, 2016). However,

the absence of groundwater module or the poor parameterization

of interactions between surface water and groundwater is still an

open issue for most of LSMs (Zeng, Xie, & Zou, 2016). Alkama

et al. (2010) pointed out that the lack of groundwater parameteriza-

tion is one main culprit of overestimation of annual river discharge

and underestimation of continental ET by LSMs. Zhang, Tang, Pan

and Tang (2014) illustrated that the Variable Infiltration Capacity

(VIC) model tends to underestimate streamflow in the dry season

across the river basins over northern China because groundwater

is the main source of river baseflow in dry seasons due to its long

response time and water memory effect. Cai, Yang, David, Niu

and Rodell (2014) analysed that unconfined aquifer storage layer

for groundwater dynamics is of great significance to hydrological

modelling for major hydrological variables (e.g., runoff, ET, and

soil moisture).

The need for a groundwater module in LSMs has received

increasing attention in the past decade, and some studies have incor-

porated groundwater schemes into LSMs (Fan, Li, & Miguezmacho,

2013; Leng, Huang, Tang, Gao, & Leung, 2014; Lo, Yeh, & Famiglietti,

2008; Maxwell & Miller, 2005; Niu, Yang, Dickinson, Gulden, & Su,

2007; Vergnes, Decharme, & Habets, 2014; Le Vine, Butler, McIntyre,

& Jackson, 2016). Liang, Xie and Huang (2003) reported that incorpo-

rating a groundwater scheme into VIC model would result in drier soil

in upper layer and wetter soil in lower layer, thus leading to lower sur-

face runoff peaks, higher base flow, and less ET in two watersheds in

Pennsylvania, United States. By incorporating the water table dynam-

ics into a LSM, Yeh and Eltahir (2005) represented that the simulation

of soil water budget and river discharges gained great improvments in

Illinois, especially in low flow seasons. Niu, Yang, Dickinson, Gulden,

and Su (2007) reported that a simple groundwater scheme in a LSM

will produce much wetter soil and larger evapotranspiration for the

global as a whole than that by without groundwater representation,

most obviously in arid‐to‐wet transition regions. Ferguson and Maxwell

(2010) demonstrated that feedbacks between groundwater and land

surface water and energy balance would greatly effect the hydrologic

sensitivity to climate change by using a LSM with groundwater module.

Miguez‐Macho & Fan (2012a,b) concluded that groundwater reservoir

may be an important regulator of the Amazon water cycle both for

water and energy balance, and the potential mechanism of the interac-

tions between surface water and groundwater water was further

analysed based on model simulation. In general, emerged from previous

studies on the role of groundwater dynamics on hydrological simula-

tions is that groundwater regulates seasonal pattern of soil moisture

and river discharge by its low frequency variations and delayed

response to precipitation.
However, it is difficult to evaluate the role of groundwater module in

a LSM due to lack of water table or soil moisture observations (Vergnes &

Decharme, 2012). Fortunately, the advent of NASA's Gravity Recovery

and Climate Experiment (GRACE) satellite mission provides the opportu-

nity for large‐scale measurements of TWS variation. TWS, including water

stored as soil moisture, snow and ice, groundwater, lakes and rivers, and

the water contained in biomass, interacts with other terrestrial and mete-

orological factors to shape climate and control weather (Rodell &

Famiglietti, 2001). Previous studies have demonstrated the possibility of

using GRACE data to estimate the TWS variations (Lo, Famiglietti, Yeh,

& Syed, 2010; Niu, Yang, Dickinson, Gulden, & Su, 2007; Pokhrel, Fan,

Miguez‐Macho, Yeh, & Han, 2013; Rodell & Famiglietti, 2001). Ground-

water is a considerable component of theTWS (Leng, et al., 2014; Pokhrel

et al., 2013), and the interannual variability or trend of TWS may not be

consistent with the GRACE measurements without considration of

groundwater component (Decharme, Alkama, Douville, Becker, &

Cazenave, 2010; Döll, Fritsche, Eicker, & Schmied, 2014). It is

therefore possible to use theTWS measurements from GRACE for evalu-

ate the add value of groundwater representation in LSMs on TWS

simulation.

This study uses the framework of the distributed biosphere

hydrological (DBH) model to investigate the role of groundwater

dynamics on water budget at large scale, especially to correct underes-

timation of streamflow during the winter season and further to assess

the add value of inclusion of the groundwater dynamics on TWS vari-

ation using GRACE estimates. In this paper, Section 2 introduces the

model and the groundwater scheme. Section 3 describes the study

region, model parmeters, and experiment design. The influences of

the groundwater scheme on the hydrological simulations are analysed

in Section 4. Key mechanism of the impacts of groundwater represen-

tation and possible limitions of groudwater module and potential

future works are discussed in Section 5. Conclusion is given in

Section 6.
2 | MODEL DESCRIPTIONS

2.1 | The DBH model

The DBH model, which couples the revised Simple Biosphere (SiB2)

model (Sellers et al., 1996) with a distributed hydrological model, can

be used to simulate the transfer of energy and water between atmo-

sphere and land surface (Tang, Oki, & Kanae, 2006). The model has

been widely used in many studies (Davie et al., 2013; Hattermann

et al., 2016; Liu, Tang, Voisin, & Cui, 2016). In the following, the pro-

cesses related to soil water fluxes and runoff generation in the DBH

model are briefly described.

The model without a groundwater module is denoted

as DBH_NGW. A three‐layer model (Figure 1a) is adopted to

calculate hydraulic diffusion and gravitational drainage of water in

the soil. Soil water fluxes between layers are derived using

Darcy's law

qi;iþ1 ¼ Ki;iþ1
∂ψi;iþ1

∂zi;iþ1
þ 1

� �
; for i ¼ 1; 2; (1)

where qi, i + 1 is vertical water exchange between soil layers (m s−1),



FIGURE 1 A schematic representation of (a)
DBH_GW and (b) DBH_NGW of the water
fluxes in soil layers
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Ki, i + 1 is the hydraulic conductivity between soil layers (m s−1), ψi,

i + 1 is soil moisture potential between soil layers (m), and zi, i + 1

is vertical distance (m). The hydraulic conductivity K and soil mois-

ture potential ψ of three soil layers are calculated by the water

retention equation of Brooks and Corey (1966)

ψ ¼ ψsat
θ
θsat

� �−b

K ¼ Ksat
θ
θsat

� � 2bþ3ð Þ=b
; (2)

where ψsat is saturation soil moisture potential (m); Ksat is saturation

hydraulic conductivity (m s−1); θsat is the soil water content at satu-

ration (i.e., porosity); θ is the soil water content (%); b is the empirical

soil pore size distribution index.

The baseflow Qb from the recharge zone (Layer 3) is determined

by the gravitational drainage and the heterogeneities in soil moisture

fields (Sellers et al., 1996)

Qb ¼ fice KsatW3
2bþ3ð Þ sinϕþ 0:001

θsatD3W3

T

� �
; (3)

where the factor f ice allows for a progressive reduction in soil hydrau-

lic conductively as the soil freezes and it is defined in Sellers et al.

(1996); W3 is the soil wetness of Layer 3 (m3/m3); ϕ is the average

slope angle; D3 is the thickness of Layer 3 (m); and T is the time step

(second).

2.2 | Groundwater scheme

A simple groundwater scheme is developed by adding an extra layer in

the three‐layer model of DBH, which connects soil layers and ground-

water reservoir. The model with the groundwater scheme is denoted

as DBH_GW, which can well represent the interactions among

groundwater, soil moisture, and water in river channels (Figure 1b).

The upper boundary of the added layer is soil in Layer 3, whereas

the lower boundary is the water table. Thus, the transfer of water

between groundwater and the third layer is given by
q3g ¼ K3g
∂ψ3g

∂z3g
þ 1

� �
; (4)

where q3g is the vertical water interaction between the third soil layer

and groundwater; ψ3g is soil moisture potential (m); z3g is vertical dis-

tance (m); K3g is the effective hydraulic conductivity between the third

soil layer and the groundwater table, estimated as

K3g ¼ fice
K3ψ3 − Ksatψsat

ψs − ψ3

� �
b

bþ 3

� �
: (5)

The baseflow from soil follows the ARNO model conceptualization

(Todini, 1988; Franchini & Pacciani, 1991), which is applied only to

the third soil layer to depict the non‐linear process of baseflow reces-

sion. Base flow from the third soil layer is given by

Qb1 ¼

DsDm

WsW3c
W3; 0 ≤ W3 ≤ WsW3c

DsDm

WsW3c
W þ Dm −

DsDm

Ws

� �
W3−WsW3c

W3c−WsW3c

� �2

; W3 ≥ WsW3c

8>>><
>>>:

;

(6)

where Qb1 is the subsurface runoff from soil (mm/day); W3 is the soil

moisture wetness of the third soil layer (m3/m3); Dm is the maximum

subsurface flow under saturation (mm/day); Ds is the fraction of Dm

where non‐linear (rapidly increasing) baseflow begins; W3c is the max-

imum soil moisture wetness of the third soil layer (m3/m3); Ws is the

fraction of W3c where non‐linear baseflow begins, with Ds < Ws.

The representation of river‐groundwater exchange is considered

to be groundwater flow into a river over a sloping impermeable river

bed (Childs, 1971; Towner, 1975), which can be expressed with the

absolute slope of the water table and the hydraulic conductivity (Tang,

Oki, Kanae, & Hu, 2007)

Qb2 ¼ Kshg
dhg
ds

cosθb þ sinθb

� �
; (7)

where Qb2 is the flow between the groundwater and river water (m2/s);

θb is the bed slope (rad); s is the distance along the riverbed (m); and hg

is the aquifer thickness (m).
dhg
ds

is calculated as
dhg
ds

¼ hr cosθb − hw
L=2 cosθb

, where

hr is the depth of river; hw is the groundwater level; and L is the width of



HUANG ET AL. 1221
hillslope, which is set as half of the value of grid area to river length in the

grid cell.Qb2 > 0 indicates that water flows from groundwater to river net-

work, whereas Qb2 < 0 means river recharge groundwater (see Figure S1).

Change in groundwater depth Δhw is calculated by the groundwa-

ter reservoir storage variation

Δhw
Δ

t ¼ q3g −Qb2 −Ql

� �
μ

; (8)

where Ql is groundwater discharge in water depth by other reasons

(e.g., groundwater extraction by human; m/s); μ is the specific yield

with μ = 0.1 is used in this study.
3 | STUDY REGION AND EXPERIMENTS

3.1 | Study region

Both DBH_NGW and DBH_GW are applied in the upstream of the

Yellow River basin above the Tangnaihai station (Figure 2). The area

of the study region is 117,524 km2, which accounts for 16.2% of the

total area of theYellow River basin. The study area is in the Northeast

Tibet Plateau with a high elevation between 2,670 and 6,250 m and

has a typically plateau climate. Annual average air temperature varies

between −4°C and 2°C from northwest to southeast. Annual mean

annual precipitation for the period of 1982–2014 is 488 mm, with

70–90% of rainfall occurring in the wet seasons (June to September)

due to the southwest monsoon from the Indian Ocean (Tang, Oki,

Kanae, & Hu, 2008). Grassland covers about 80% of the study area,

and only grazing activities occur there. The upstream of the Yellow

River basin is selected for two reasons: first, there are very few human

activities (e.g., irrigation and reservoirs) and can be treated as unim-

paired (Cong, Yang, Gao, Yang, & Hu, 2009); second, the study region

is a typical arid‐to‐wet transition region where groundwater discharge

is the main component of runoff, especially in dry seasons and ground-

water dynamics also have large impacts on water and energy balance.
FIGURE 2 The upstream of theYellow River
basin
3.2 | Datasets

The meteorological forcing data from 36 meteorological stations

within and close to the study area are obtained from the China Mete-

orological Administration over the period from 1982 to 2014 (http://

data.cma.cn/). These data include the daily precipitation, mean air

temperature, maximum and minimum air temperature, mean surface

relative humidity, sunshine duration, and wind speed. The station

datasets are then spatially interpolated to 10 × 10 km grids using an

inverse‐distance weighted method, wherein the interpolation of air

temperature considered the effects of elevation (New, Hulme, &

Jones, 2000; Yang, Sun, Liu, Cong, & Lei, 2006). The vegetation condi-

tion forcing data, leaf area index, and fraction of photosynthetically

active radiation absorbed by the green vegetation canopy are

obtained from Boston University (Myneni, Ramakrishna, Nemani, &

Running, 1997; Zhu, Bi, Pan, & Ganguly, 2013). The vegetation condi-

tion indices were also resampled to the 10 × 10 km grids. The

observed monthly discharge over 2003–2014 at Tangnaihai station,

which are applied for model calibration and validation, was obtained

from Ministry of Water Resources of China (Information Center of

Water Resources, 2003).

The latest GRACE Tellus land products (RL05) provided by the

Center for Space Research, Geo Forschungs Zentrum Potsdam, and

Jet Propulsion Laboratory are used (https://grace.jpl.nasa.gov/data/

get‐data/). The GRACE data, which estimate the monthly variation

of TWS is at a spatial resolution of 1° × 1°. The spatial average values

of GRACE data in the upstream of the Yellow River basin are esti-

mated using a mask, which is derived from the digital elevation model

(DEM) of the study region and used to extract the values of three

GRACE products from 1° × 1° spatial resolution. Due to the post‐

processing and sampling of GRACE data, TWS variations at grid scale

tend to be adjusted by multiplying scaling factors first that are derived

from the Community Land Model (CLM4.0; Landerer & Swenson,

2012). In this study, gridded scaling factors provided together with

the GRACE Tellus products were applied to these three GRACE data.

We use these three datasets from 2003 to 2014 (excluding the miss-

ing data in June 2003, January 2011, June 2011, May 2012, October

2012, March 2013, August 2013, September 2013, February 2014,

http://data.cma.cn
http://data.cma.cn
https://grace.jpl.nasa.gov/data/get-data
https://grace.jpl.nasa.gov/data/get-data
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and December 2014; the missing data were filled using linear interpo-

lation method). Because the GRACE TWS data are anomalies relative

to the 2004–2009 time‐mean baseline, we also compute the anoma-

lies of TWS for model simulations based on the 2004–2009 average

TWS. As all three centres produced reasonably similar TWS anomalies

for the period of 2003 to 2014, the ensemble mean of these three

GRACE products was obtained for evaluation.
3.3 | Parameters and model calibration

The soil parameters, such as the soil water potential at saturation ψsat

(m), soil hydraulic conductivity at saturation Ks (m s−1), soil pore size

distribution index b, and porosity θsat, were derived from the Food

and Agriculture Organization Digital Soil Map of the World. The con-

figuration of the three soil layers for both DBH_GW and DBH_NGW

is 0.02, 0.78, and 0.2 meters for the surface layer, root zone, and

recharge layer, respectively. The parameters, including the precipita-

tion heterogeneity parameters Pa, Pb, and Pc (Tang et al., 2007) in both

DBH_GW and DBH_NGW and the ARNO model parameters Ds and

Ws only in DBH_GW were calibrated and then the simulated

streamflow was validated against the monthly discharge from 2003

to 2014 at Tangnaihai station. In DBH model, the precipitation hetero-

geneity parameters Pa, Pb, and Pc are applied to represent the effects

of subgrid heterogeneity in precipitation on hydrological processes.

Consistent with previous study (Tang et al., 2007), we set Pa = Pb,

and Pc = ePa, and the precipitation variability within a grid cell will

become larger with increasing Pa. In model calibration (in DBH_NGW),

Pa was set between 2 to 10 at the interval of 0.5, and 17 runs of sim-

ulations were conducted for the period 1982–2014. In order to

remove the effects due to uncertain initial conditions, the 1982–

2002 period is treated as spin‐up, and the remaining 12 years

(2003–2014) of simulation were used for validations. For each run,

the simulated monthly streamflow is compared with observations,

and the Pa, Pb, and Pc that maximize the Nash‐Sutcliffe efficiency coef-

ficient (NSC) between simulated and observed monthly streamflow

are chose as the optimal values. Here, parameters are set as Pa = Pb = 5.5

for optimal configuration for DBH_NGW. To make equal comparisons

between DBH_GW and DBH_NGW, the precipitation heterogeneity

parameters were set to Pa = Pb = 5.5 in both DBH_GW and

DBH_NGW. The parameters Ds and Ws that govern subsurface runoff

process in DBH_GW are calibrated to be 0.002 and 0.6, respectively,

using the same calibration methods as for Pa and Pb. Therefore, both

DBH_NGW and DBH_GW are calibrated against observations, and

the input data (e.g., climate data and soil parameters) and the precipi-

tation heterogeneity parameters of these two models are the same,

excluding the impacts of parameters on simulation comparison

between DBH_GW and DBH_NGW.
3.4 | Experiment design

To evaluate the effects of the groundwater representation on hydro-

logical modelling, hydrological simulation with the groundwater

scheme (DBH_GW) and the control experiment without groundwater

consideration (DBH_NGW) are compared against observed monthly
river discharge and GRACE TWS anomalies. Both experiments are

run with a long spin‐up period from 1982 to 2002 to remove the

uncertainties due to uncertain initial conditions and then the model

simulations were evaluated over the period from 2003 to 2014. The

DBH model was run at 1 hr time step and at a spatial resolution of

10 × 10 km grids. Monthly model outputs were used to compare with

observed streamflow and GRACE TWS variations. The model simu-

lated TWS variations were calculated by the sum of simulated soil

moisture W (mm), snow water equivalent S (mm), water in biomass V

(mm), water in river channel R (mm), and groundwater G (mm; G = 0

in the DBH_NGW simulation)

TWS ¼ W þ Sþ V þ Rþ G: (9)

Four metrics are used to assess the model performance: the relative

bias (BIAS), the root mean square error (RMSE), the relative root mean

square error (RRMSE), and the NSC. NSC would be negative when

simulated hydrological variable is very poor and is above 0.5 for a rea-

sonable simulation, is 1 for a perfect simulation. BIAS, RMSE, RRMSE,

and NSC are calculated as follows:

BIAS ¼ 1
n
∑
n

i¼1
si − oið Þ=o; (10)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
si−oið Þ2

s
; (11)

RRMSE ¼ RMSE=o; (12)

NSC ¼ 1 −

∑
n

i¼1
si−oið Þ2

∑
n

i¼1
oi−oð Þ2

; (13)

where n is the total number of time series; si and oi denoted time

series of observation and simulation discharge of hydrologic gauge,

respectively; o ¼ ∑o=n is the averaged value of observation. All these

scores are computed in terms of monthly values. In addition, we use

the standard deviation SD and amplitude A to characterize the tempo-

ral variability of river discharge and TWS

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1
∑
n

i¼1
xi−xð Þ2

s
; (14)

A ¼ xmax − xmin; (15)

where xi is the time series; n is the total number of time series;

x ¼ ∑x=n is the averaged value of x; xmax and xmin are the maximum

and minimum value of x, respectively. A high standard deviation and

amplitude value indicate large variability of the time series.
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4 | RESULTS

4.1 | The influence of groundwater dynamics on
river discharge simulation

Figure 3a shows the comparisons between the DBH_GW and

DBH_NGWmonthly river discharge from 2003 to 2014 against obser-

vations at Tangnaihai station. The BIAS, RMSE, RRMSE, and NSC of

DBH_GW are −1.48%, 179m3/s, 0.28, and 0.87, respectively, whereas

these of DBH_NGW are 4.96%, 259m3/s, 0.41, and 0.72, respectively.

In addition, the standard deviations of DBH_GW and DBH_NGW

monthly river discharge are 471 and 642 m3/s respectively, against

491m3/s of observations, whereas the amplitudes of them are 2,234

and 2,849 m3/s respectively, against 2,442 m3/s of observations. In

terms of the annual cycle of river discharge (shown in Figure 3b), the

BIAS, RMSE, RRMSE, and NSC of DBH_GW are −1.48%, 100 m3/s,

0.16, and 0.94, respectively, whereas these of DBH_NGW are

4.96%, 214m3/s, 0.33, and 0.74, respectively. It is evident that all

quantitative metrics have been greatly improved by incorporating a

groundwater module into DBH model, and monthly river discharge

was satisfactorily reproduced by DBH model by considering ground-

water dynamics. And the consideration of groundwater dynamics also

decreases the interannual and intraseasonal variability of river dis-

charge. Comparing with DBH_NGW, DBH_GW is prone to yield less

river discharge in summer time and more river discharge in cold sea-

son. Additionally, the significant improvement is also found in transi-

tion seasons (spring and autumn). In comparison with DBH_GW,

DBH_NGW has produced a more obvious sharp decrease of

streamflow in fall and more rapid increase in spring. Furthermore,

Figure 4 shows the seasonal river discharge estimates derived from
FIGURE 3 Comparison between the
DBH_GW and DBH_NGW in (a) monthly river
discharge variation and (b) multiyear monthly
mean river discharge from 2003 to 2014
against observations at Tangnaihai station
DBH_GW and DBH_NGW from 2003 to 2014 against observations

in the upstream of the Yellow River basin, and the evaluation indices

of the DBH_GW and DBH_NGW seasonal river discharge against

observations are listed in Table 1 and Table 2. The result shows the

simulated river discharge, after incorporating the groundwater

scheme, has been improved through reducing the bias, from 61% to

9% in spring, from 29% to 9% in summer, from 14% to 4% in fall,

and from 44% to 14% in winter, respectively, corresponding to the

reduced biases of 52%, 20%, 10%, and 30%. The most pronounced

improvements are found in cold seasons when river discharge simu-

lated by DBH_NGW exhibits clear underestimation. Moreover,

DBH_GW also simulated a more reasonable interannual seasonal river

discharge than DBH_NGW, as the RMSE, RRMSE, and (shown in

Table 2) in DBH_GW are smaller than these of DBH_NGW in all sea-

sons, especially in spring when the RMSE value in DBH_GW is less

than half of that in DBH_GW. In general, groundwater representation

in DBH model improves the simulation of river discharge in upstream

of theYellow River basin. This is attributed to the model framework of

DBH_GW that is more authentic than that of DBH_NGW, and the

groundwater reservoir may function as a temporal buffer for river dis-

charge and smoothes the river discharge variation by its delayed and

small amplitude response to climate signal (e.g., precipitation).
4.2 | The influence of groundwater dynamics on
TWS simulation

Figure 5a shows the simulated time series of TWS anomalies by

DBH_GW and by DBH_NGW in comparison with GRACE estimates

from 2003 to 2014. In terms of the interannual variation of the TWS,

Table 3 shows the NSC between simulated TWS anomalies and



TABLE 1 Comparison between the DBH_GW and DBH_NGW mean seasonal river discharge from 2003 to 2014 against observations at
Tangnaihai station

Season R1* R2 Ro E1 = |R1‐Ro|/Ro E2 = |R2‐Ro|/Ro

November–January 259 170 302 14% 44%

February–April 226 98 249 9% 61%

May–July 992 1,172 910 9% 29%

August–October 1,028 1,225 1,078 4% 14%

*R1 and R2 are the mean seasonal river discharge from 2003 to 2014 simulated by DBH_GW and DBH_NGW (m3/s), respectively; Ro is the observation
data (m3/s); E1 and E2 are the relative error produced by DBH_GW and DBH_NGW, respectively.

FIGURE 4 Seasonal river discharge evaluation from 2003 to 2014 against observations in the upstream of the Yellow River basin: (a) NDJ: from
November to January next year; (b) FMA: from February to April; (c) MJJ: from May to July; (d) ASO: from August to October

TABLE 2 Root mean square error, relative root mean square error, and Nash‐Sutcliffe efficiency coefficient values of simulated multiannual
seasonal river discharge variations against observations

November–January February–April May–July August–October

GW NGW GW NGW GW NGW GW NGW

RMSE(m3/s) 70.5 138.3 47.1 156.1 172 289.9 157.6 195.2

RRMSE 0.23 0.44 0.19 0.63 0.19 0.32 0.14 0.18

NSC 0.25 −1.91 0.19 −7.8 0.65 0.01 0.65 0.46

Note. RMSE: root mean square error; RRMSE: relative root mean square error; NSC: Nash‐Sutcliffe efficiency coefficient
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GRACE data, as well as the maximum, minimum, amplitude, and stan-

dard deviation of TWS anomalies. NSC of DBH_GW is large than that

of DBH_NGW, and the TWS maximum, minimum, amplitude, and

standard deviation values simulated by DBH_GW are closer to GRACE

than these by DBH_NGW. In terms of the annual cycle of monthly

TWS anomalies (shown in Figure 5b), the quantitative metrics (RMSE,

RRMSE, and NSC) of DBH_GW (6.92 mm, 2.28, and 0.91, respec-

tively) are better than that in DBH_NGW (12.5 mm, 4.14, and 0.71,

respectively), suggesting that the simulation considering groundwater

dynamics in DBH model gives a remarkably improved agreement with

GRACE data than DBH_NGW. In addition, the TWS variation simu-

lated by DBH_NGW decreases more slowly during October to April

and increases more slowly during April to September than these by
DBH_GW. It is evident that groundwater regulates the storage of

the river basin by increasing TWS amplitudes and signals, especially

in spring and autumn. Generally, representation of groundwater

dynamics in DBH model increases the amplitudes and variability of

TWS anomalies and shows an improved performance in TWS interan-

nual and intraseasonal variation.

Figure 6 shows the changing trend of TWS estimated from

DBH_GW, DBH_NGW, and GRACE. The magnitude of trend of

TWS anomalies (mm/month) is 0.24 ± 0.09, 0.16 ± 0.07, and

0.21 ± 0.11 (the error range is the 95% confidence bounds) for

DBH_GW, DBH_NGW, and GRACE, respectively. Specifically, as sim-

ulated by the DBH_GW, groundwater and surface show a significant

increasing trend with a magnitude of 0.08 ± 0.03 mm/month and



FIGURE 5 (a) The simulated anomalies of the terrestrial water
storage (TWS) by DBH_GW (water in surface ponding and canopy,
soil water, groundwater, and snow) and by DBH_NGW (water in
surface ponding and canopy, soil water, and snow) in comparison with
Gravity Recovery and Climate Experiment (GRACE) data from 2003 to
2014; (b) the simulated monthly mean anomalies of the TWS by
DBH_GW and by DBH_NGW in comparison with GRACE data from
2003 to 2014

TABLE 3 The Nash‐Sutcliffe efficiency coefficient between simu-
lated terrestrial water storage anomalies and Gravity Recovery and
Climate Experiment data and the minimum value, maximum value,
amplitude, and standard deviation of them

NSC

Standard
deviation
(mm)

Minimum
TWS
(mm)

Maximum
TWS (mm)

Amplitude
(max‐min;
mm)

DBH_GW 0.73 25.35 −63.72 76.66 140.38

DBH_NGW 0.63 16.65 −42.85 61.99 104.84

GRACE * 28.34 −69.11 72.78 141.89

Note. NSC: Nash‐Sutcliffe efficiency coefficient; TWS: terrestrial water
storage; GRACE: Gravity Recovery and Climate Experiment
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0.16 ± 0.08 mm/month, respectively (Figure 6d), whereas surface

water shows a significant increase with a magnitude of

0.16 ± 0.07 mm/month by DBH_NGW. From the results, surface

water storage shows almost the same changing pattern both in

DBH_GW and DBH_NGW, where increasing in soil moisture is the

dominant factor. Additionally, increasing trend in groundwater is an

important component of total magnitude of trend in TWS, which facil-

itates the DBH_GW to capture the trend of GRACE TWS data.

Increasing trend of TWS in the upstream of the Yellow River basin

has been reported in many studies (Mo, Wu, Wang, & Zhou, 2016;

Jiao, Zhang, Liu, & Kuang, 2015; Zhong et al., 2009). Increasing in

TWS can be motived by various factors, including an increase in pre-

cipitation and a decrease in ET. Figure S2 shows the cumulative of

the DBH_GW estimates of precipitation, ET, river discharge, and the

cumulative precipitation minus ET (P‐ET). It shows that the cumulative

P‐ET is above the cumulative of river discharge, especially in the wet
seasons when extra water stores in soil and groundwater reservoir

and TWS increase. In addition, recent studies and local observation

indicated that the study region was getting warmer and wetter after

2000 as the runoff showed a significant increasing trend (Lan, Lu, La,

& Sheng, 2013; Wang, Li, & Jiang, 2014). Furthermore, as the ecolog-

ical protection and construction project started in the Three‐River

Source regions in 2005 by the Chinese government, storage in lakes

extend according to report from the Qinghai Provincial Meteorological

Bureau (Mo et al., 2016). Groundwater increases in the study regions

has been reported in recent years. As reported by official reports from

Qinghai Provincial Climate Monitoring and Assessment Centre (2009),

groundwater levels started to rise in the Three‐River Source regions

since 2009 due to increasing precipitation and river discharge. Results

from Jiao, Zhang, Liu and Kuang (2015) indicated that the increasing

trend of groundwater level was observed from groundwater wells near

the study region.
4.3 | Impacts of groundwater dynamics on soil
moisture and ET

The comparison of monthly volumetric soil moisture content in study

region between DBH_GW and DBH_NGW is shown in Figure 7. The

seasonal cycle of soil moisture is clearly represented in Figure 7a.

Due to more precipitation and more water infiltrates into the soil, soil

moisture in wet seasons (i.e., May to October) is higher than that in

dry seasons (i.e., November to April). Generally, DBH_GW tends to

represent wetter soil moisture content than DBH_NGW, especially

in wet seasons (shown in Figure 7b). The lower boundaries of soil col-

umn are gravitational free drainage and groundwater table in

DBH_NGW and DBH_GW, respectively, and the soil moisture poten-

tial difference between the third soil layer and lower boundary in

DBH_NGW is obvious larger than that of DBH_GW. Therefore, grav-

itational free drainage in DBH_NGW produces greater leakage from

the bottom layer soil than DBH_GW. In addition, the gravitational

drainage is proportional to the bottom layer soil moisture (Equation 3),

thus the difference of soil moisture in DBH_GW and DBH_NGW is

higher in wet seasons and reaches the most in September. Soil mois-

ture continues recharging groundwater reservoir and river channels

in dry seasons in DBH_GW, and the soil moisture difference decreases

and almost values 0 in April.

In terms of the annual cycle of monthly mean volumetric soil

moisture (shown in Figure 8), the standard deviation and amplitude

of simulated by DBH_GW are larger than these of DBH_NGW, dem-

onstrating that the groundwater reservoir has the potential to increase

soil moisture storage. Groundwater representation in DBH model

change the lower boundary of soil, and the accompanying change in

soil moisture potential difference between the third soil layer and

lower boundary will generate less soil drainage when compared with

DBH_NGW, further leading to higher soil wetness.

The comparison of monthly time series of ET between DBH_GW

and DBH_NGW is shown in Figure 9. The seasonal cycle of ET is sim-

ilar to that of soil moisture. Actual ET in dry regions is mostly deter-

mined by soil moisture, and in the upstream of the Yellow River

basin, DBH_GW trends to produce much wetter soil than DBH_NGW.



FIGURE 6 Terrestrial water storage (TWS) variation and trend from 2003 to 2014: (a) TWS anomalies of Gravity Recovery and Climate
Experiment data; (b) TWS anomalies of DBH_GW; (c) TWS anomalies of DBH_NGW; (d) groundwater and surface water anomalies of DBH_GW

FIGURE 7 Comparison of monthly time series of volumetric soil
moisture content in study region between DBH_GW and
DBH_NGW: (a) monthly soil moisture time series simulated by
DBH_GW from 2003 to 2014 and (b) differences of monthly soil
moisture between DBH_GW and DBH_NGW during the period
2003–2014
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Therefore, DBH_GW simulates much larger ET than DBH_NGW, and

the difference reaches the peak in September.
5 | DISCUSSIONS

5.1 | Mechanism of groundwater dynamics on
hydrological processes

The results presented in this study indicate the benefits of incorpora-

tion groundwater module in DBH model on hydrological simulation. In
the upstream of the Yellow River basin, river discharge shows a signif-

icant seasonal variation with a peak in summer and a bottom in winter,

consistent with the seasonal precipitation variation. The rate of

groundwater flows into streams is determined by their hydraulic con-

nection and hydraulic head gradient. In summer, more precipitation

infiltrates into soil and further stores in groundwater reservoir, thus

lead to peak flow reduction and increase in TWS and water table,

whereas in winter, due to low precipitation and frozen soil moisture

in the surface layer, groundwater discharges into river channel,

resulting in reasonable simulation of streamflow and TWS. Therefore,

groundwater reservoir holds the groundwater in the subsurface longer

and increases the memory of TWS storage, further delays and

smoothes simulated river discharge. Conversely, without consider-

ation of the groundwater, precipitation and snow melt will transform

into discharge directly, leading to more sharp increase of streamflow

in spring, and river discharge in winter will be underestimated due to

lack of groundwater discharge. Therefore, due to its low‐frequency

variability and delayed response to precipitation, groundwater repre-

sentation in DBH model improves the river discharge simulation both

in amount and variability, agreeing with the results in previous studies

(Liang et al., 2003; Pokhrel et al., 2013; Vergnes & Decharme, 2012).

Groundwater dynamics in DBH model also improves the amplitude

and signal in terms of the interannual variation and annual cycle

variability of TWS like previous studies (Fan et al., 2007; Lo, Yeh,

& Famiglietti, 2008; Maxwell & Miller, 2005; Niu, Yang, Dickinson,

Gulden, & Su, 2007). Furthermore, increasing trend in groundwater

is an important part of trend in TWS, which further leading to an

improved agreement with the magnitude of GRACE TWS changing

trend.
5.2 | Uncertainties in GRACE TWS estimates

The uncertainty of GRACE derived TWS estimates is still a key issue.

Rodell and Famiglietti (1999) concluded that the variations of TWS



FIGURE 8 Comparison of annual cycle of
volumetric soil moisture simulated by
DBH_GW and DBH_NGW

FIGURE 9 Comparison of monthly time series of evapotranspiration
(ET) in study region between DBH_GW and DBH_NGW: (a) monthly
ET time series simulated by DBH_GW from 2003 to 2014 and (b)
differences of monthly ET between DBH_GW and DBH_NGW during
the period 2003–2014
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would likely be detected depending on the size of the study region

and the magnitude of the TWS variations (e.g., area above

2,000,000 km2 and TWS variation more than a few millimetres). Wahr,

Swenson and Velicogna (2006) estimated the uncertainties in the

GRACE estimates with a 750‐km smoothing radius, and results

showed that the error near the polos (about 8 mm) is smaller than that

at low latitudes (about 26 mm), and the error will decrease as the test

radius increase. Here, we assess the uncertainty in the GRACE esti-

mates in the upstream of the Yellow River basin using the method of

Landerer and Swenson (2012). In brief, the total error in study region

is obtained by summing leakage and measurement errors in quadra-

ture

Err tot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Err measureð Þ2 þ Err leakageð Þ2

q
: (16)

Leakage and measurement errors at regional level were calculated

based on the error fields provided by GRACE Tellus data. As a result

of the spatial correlations of the errors in gridded scale, the error

covariance (cov) is taken into consideration in calculation of regional

error
cov i; jð Þ ¼ Erri
*Errj

* exp
−d2ij
2d20

 !
; (17)

where Erri and Errj are the standard deviations of the uncertainty esti-

mates for grid points i and j; dij is the distance between two grid

points, and d0 is a decorrelation length, which is set to 100 km for

leakage error and 300 km for measurement error. Then, error variance

of a regional TWS estimates (Err_region) is calculated as

Err region ¼ ∑
n

i¼1
∑
n

j¼1
wiwj cov i; jð Þ; (18)

where wi and wj are the area weights to the region for grid i and j,

respectively. From the analysis, the measurement error and leakage

error of GRACE estimates are 11.1 and 22.1 mm, respectively, and

the total error is 24.4 mm in the upstream of the Yellow River basin.

To further analyse the uncertainty of GRACE estimates, the standard

deviation of the monthly GRACE TWS is calculated (Figure S3). The

amplitude of annual cycle of GRACE TWS estimates is 64.4 mm (after

detrending), and the standard deviations of the monthly GRACE TWS

are with the range 11–20 mm. In general, in spite that the regional

error (24.4 mm) is beyond the accuracy (21 mm), low standard devia-

tions of the monthly GRACE TWS and high amplitude of annual cycle

indicate that TWS variation in the upstream of the Yellow River basin

is detectable by GRACE estimates.

5.3 | Limitations and future works

We acknowledge that there are still some deficiencies appearing in the

simulations. For example, the simulated river discharge is over simu-

lated in high flow seasons (e.g., June–August) and underestimated in

autumn (i.e., October and November). In spite of the reasonable simu-

lation of TWS by DBH_GW, the seasonal amplitude of TWS is smaller

than GRACE estimation, especially in high flow seasons (e.g., July–

October). These deficiencies in hydrological simulation can be attrib-

uted to multi reasons, such as the uncertainties in climate forcing,

model structure, and parameters (Alkama et al., 2010; Vergnes &

Decharme, 2012). In this part, we will discuss the limitations and

future works of the groundwater module of the DBH model.

First, only a single layer is introduced below the soil column in the

groundwater module, and groundwater is treated as a reservoir that

regulates hydrological processes. Intermediate zone and groundwater
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aquifer constitute a complex system, which is poorly represented by

the simple one‐layer groundwater scheme in the DBH model. In fact,

groundwater stores in unconfined aquifer, which can be presented

by multiple layers, and physically based distributed dynamic ground-

water model can well represent the groundwater flows (Niu, Yang,

Dickinson, Gulden, & Su, 2007; Tian, Li, Cheng, Wang, & Hu, 2012;

Wendland, Rabelo, & Roehrig, 2006), and deep soil also plays an

important role in hydrological processes (Le Vine et al., 2016). Water

stores in the intermediate zone between unsaturated soil and ground-

water is of great significance in TWS variation (Rodell & Famiglietti,

2001), and without consideration of intermediate zone could result

in underestimation of TWS. Furthermore, the interaction between

confined aquifer and surface water is considerable, and water storing

in confined aquifer has been proved to be a great part of total TWS

(de Graaf et al., 2017). Only vertical water exchanges between

groundwater and surface water are considered in this study, but

neglecting subgrid groundwater flow and lateral flow in soil, which

has significant impacts on hydrological processes (Tian et al., 2012).

Furthermore, groundwater depth in DBH model is converted by the

groundwater storage variation, whereas a physical mechanism‐based

water table parameterization is still lack, which could have a direct

impact on the simulated water table and then affect baseflow simula-

tion. Additionally, groundwater withdrawal for anthropogenic activity,

which has been proved to be of great significance to water cycle (Döll

et al., 2014; Leng et al.,2014; Pokhrel et al., 2015; Wada et al., 2010),

will be integrated into DBH model in the future. In general, future

works would be conducted for enhancing the model capability, and a

more realistic groundwater model, which can well represent the

three‐way interactions among river water, groundwater, and land sur-

face processes is expected.
6 | CONCLUSIONS

In the study, a groundwater scheme, considering the interactions of

surface water and groundwater, is incorporated into the DBH model.

The groundwater scheme is parameterized on the basis of a concep-

tual groundwater reservoir with the dynamic representation of the

interactions among soil moisture, groundwater, and river. Two numer-

ical experiments are conducted in the upstream of the Yellow River

basin with one based on a default model without groundwater

dynamic (DBH_NGW) and the other with groundwater module active

(DBH_GW). The main conclusions are summarized as follows:

1. River discharge simulation is greatly improved with incorporation

of groundwater dynamics in the DBH model mainly through

reducing the bias in the seasonality. Specifically, DBH_GW simu-

lates less streamflow in summer and more river discharge in cold

season, whereas DBH_NGW produces a sharp decrease of

streamflow in fall and more rapid increase in spring when com-

pared with DBH_GW. Consideration of groundwater module in

DBH model leads to decrease in the variability of total river dis-

charge, interannual variation, and seasonal cycle of river dis-

charge, which matches better with observations than the

default model.
2. Comparing the TWS variation simulated by two experiments (i.e.,

DBH_GW and DBH_NGW) and GRACE estimates, it is found that

DBH_GW better reproduced the change pattern of TWS against

GRACE data than DBH_NGW, especially in terms of the interan-

nual and intraseasonal variability. Furthermore, the TWS without

groundwater (DBH_NGW) decreases more slowly during cold

season and increases more slowly in warm season when com-

pared with DBH_GW. Additionally, changing trend in groundwa-

ter is an important component of trend in TWS, and

consideration of dynamics of groundwater will further leads to

an improved agreement of simulated TWS with GRACE in terms

of the magnitude of TWS changing trend.

3. DBH_GW simulates less drainage in soil, and the simulated soil

moisture of DBH_GW is wetter than that of DBH_NGW, espe-

cially in wet season, which subsequently affects the simulated

ET because the calculation of ET is based on soil moisture.

We acknowledge that the conclusions summarized in this study are

restricted the specific model in the case study region, and there are

still many limitations and deficiencies in the groundwater module.

Thus, a global‐scale study should be pursued in the future to evaluate

whether the findings of this study would hold in other regions, and

more efforts will be devoted to enhancing the model capability by

considering three‐way interactions among river water, groundwater,

and land surface processes, and importantly, the subgrid groundwater

flow and lateral flow will be also coupled in groundwater module in

the future.
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